**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Synchrotron radiation

Summary

Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (a ⊥ v). It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.
Synchrotron radiation is similar to bremsstrahlung radiation, which is emitted by a charged particle when the acceleration is parallel to the direction of motion. The general term for radiation emitted by particles in a magnetic field is gyromagnetic radiation, for which synchrotron radiation is the ultra-relativistic special case. Radiation emitted by charged particles moving non-relativistically in a magnetic field is called cyclotron emission. For particles in the mildly

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (6)

Related concepts (46)

X-ray

X-ray radiation, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 nanometers to 10 picom

Black hole

A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predi

Gamma ray

A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of th

Related lectures (46)

Related publications (100)

Loading

Loading

Loading

Related units (3)

Related courses (22)

Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new ideas and challenges of the possible paths towards the next generation of accelerators will be given.

The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.

The dynamics of ordinary matter in the Universe follows the laws of (magneto)hydrodynamics. In this course, the system of equations that describes astrophysical fluids will be discussed on the basis of selected astrophysical examples, from the physics of stars, to galaxies and the early Universe.

A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersion-free regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice features small values of the optical functions, a large number of compact TME cells, and a large number of wiggler magnets. Strong sextupole magnets are needed for the chromatic correction which introduces significant nonlinearities, decreasing the dynamic aperture. The nonlinear optimization of the lattice is described. An appropriate scheme of chromaticity correction is determined that gives reasonable dynamic aperture and zero chromaticity. The nonlinearities induced by the short period wiggler magnets and their influence on the beam dynamics are also studied. In addition, approaches for absorption of synchrotron radiation power produced by the wigglers are discussed. Realistic misalignments of magnets and monitors increase the equilibrium emittance. The sensitivity of the CLIC damping ring to various kinds of alignment errors is studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed in order to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron tune coupling. The small emittance, short bunch length, and high current in the CLIC damping ring could give rise to collective effects which degrade the quality of the extracted beam. A number of possible instabilities and an estimate of their impact on the ring performance are briefly surveyed. The effects considered include fast beam-ion instability, coherent synchrotron radiation, Touschek scattering, intrabeam scattering, resistive-wall wake fields, and electron cloud.

With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overviewed, then the steady-state and time-dependent algorithms behind the ultra-high vacuum simulator Molflow are presented. Some practices to tackle the most common problems that arise when simulating large systems are also discussed. Results are compared to theory, and validated through two experiments. Next the the main steps of synchrotron radiation simulations are presented. Properties of SR are summarized, along with optimizations that allow simulating the rather complex underlying physics at a higher speed. The resulting software's photon generation algorithm is benchmarked against published data. The phenomenon of photon stimulated desorption and its literature is overviewed, then two dedicated photodesorption experiments carried out in KEK (Tsukuba, Japan) are presented: one with six room-temperature samples and an other at liquid nitrogen temperature. A simple synchrotron radiation calculation is performed for the LHeC interaction region, allowing to compare Synrad+ results with published analytic calculations. Then the calculations are repeated for a more precise geometry description. The pressure profile of a crotch absorber of the recently started Max IV light source is calculated using Molflow+ and Synrad+ together. Finally the pressure analysis of the SuperKEKB interaction region is presented, consisting of modeling the vacuum chamber and the optics, calculating synchrotron radiation, then performing vacuum simulations. It is confirmed that pressure is expected to meet the design requirements during operation of the machine.

Special relativity (SR) determines the properties of synchrotron radiation, but the corresponding mechanisms are frequently misunderstood. Time dilation is often invoked among the causes, whereas its role would violate the principles of SR. Here it is shown that the correct explanation of the synchrotron radiation properties is provided by a combination of the Doppler shift, not dependent on time dilation effects, contrary to a common belief, and of the Lorentz transformation into the particle reference frame of the electromagnetic field of the emission-inducing device, also with no contribution from time dilation. Concluding, the reader is reminded that much, if not all, of our argument has been available since the inception of SR, a research discipline of its own standing.