**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Lorentz covariance

Summary

In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".
Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings:
A physical quantity is said to be Lorentz covariant if it transforms under a given representation of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalars, four-vectors, four-tensors, and spinors. In particular, a Lorentz covariant scalar (e.g., the space-time interval) remains the same under Lorentz transformations and is said to be a Lorentz invariant (i.e., they transform under the trivial representation).
An equation is said to be Lorentz covariant if it can be written in terms of Lorentz covariant quantities (confusingly, some use the term invariant here). The key property of such equations is that if they hold in one inertial frame, then they hold in any inertial frame; this follows from the result that if all the components of a tensor vanish in one frame, they vanish in every frame. This condition is a requirement according to the principle of relativity; i.e., all non-gravitational laws must make the same predictions for identical experiments taking place at the same spacetime event in two different inertial frames of reference.
On manifolds, the words covariant and contravariant refer to how objects transform under general coordinate transformations. Both covariant and contravariant four-vectors can be Lorentz covariant quantities.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (85)

Related people (33)

Related units (11)

Related concepts (16)

Related courses (10)

Related lectures (98)

PHYS-324: Classical electrodynamics

The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.

PHYS-431: Quantum field theory I

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.

PHYS-427: Relativity and cosmology I

Introduce the students to general relativity and its classical tests.

In differential geometry, the four-gradient (or 4-gradient) is the four-vector analogue of the gradient from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors. This article uses the (+ − − −) metric signature. SR and GR are abbreviations for special relativity and general relativity respectively. indicates the speed of light in vacuum. is the flat spacetime metric of SR.

In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be continuous (such as rotation of a circle) or discrete (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries.

In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the (1/2,1/2) representation. It differs from a Euclidean vector in how its magnitude is determined.

Partons and Hadrons: Strong Force and Deep Inelastic Scattering

Explores partons, hadrons, strong force, deep inelastic scattering, elastic and inelastic scattering, and Bjorken scaling.

Non-Abelian Gauge Transformations

Explores Non-Abelian gauge transformations, emphasizing mathematical representations and field strengths.

Quantum Field Theory: Normalization and Lorentz Invariance

Explores the relativistic normalization of states in quantum field theory.

Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...

Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer

The measurement of the charge asymmetry in top quark pair events with highly Lorentz-boosted top quarks decaying to a single lepton and jets is presented. The analysis is performed using protonproton collisions at root s = 13 TeV with the CMS detector at t ...

The boundary correlation functions for a quantum field theory (QFT) in a fixed anti-de Sitter (AdS) background should reduce to S-matrix elements in the flat-space limit. We consider this procedure in detail for four-point functions. With minimal assumptio ...