Aluminium recycling is the process by which scrap aluminium can be reused in products after its initial production. The process involves simply re-melting the metal, which is far less expensive and energy-intensive than creating new aluminium (Recycled Aluminum-Secondary Aluminium) through the electrolysis of aluminium oxide (), which must first be mined from bauxite ore and then refined into aluminium oxide using the Bayer process and then refined again into aluminium metal using the Hall–Héroult process.
Recycling scrap aluminium requires only 5% of the energy used to make new aluminium from the raw ore. For this reason, approximately 36% of all aluminium produced in the United States comes from old recycled scrap. Used beverage containers are the largest component of processed aluminum scrap, and most of it is manufactured back into aluminium cans.
A common practice since the early 1900s and extensively capitalized during World War II, aluminium recycling is not new. It was, however, a low-profile activity until the late 1960s, when the exploding popularity of aluminium beverage cans finally placed recycling into the public consciousness.
Sources for recycled aluminium include aircraft, automobiles, bicycles, boats, computers, cookware, gutters, siding, wire, and many other products that need a strong lightweight material, or a material with high thermal conductivity. As recycling does not transmute the element, aluminium can be recycled indefinitely and still be used to produce any product for which new aluminium could have been used.
Aluminium is an infinitely recyclable material, and it takes up to 95 percent less energy to recycle it than to produce primary aluminum, which also limits emissions, including greenhouse gases. Today, about 75 percent of all aluminum produced in history, nearly a billion tons, is still in use.
The recycling of aluminium generally produces significant cost savings over the production of new aluminium, even when the cost of collection, separation and recycling are taken into account.