Related courses (32)
MICRO-602: Micro-magnetic field sensors and actuators
The course provides the basis to understand the physics, the key performance, and the research and industrial applications of magnetic sensors and actuators. Together with a detailed introduction to m
EE-536: Physical models for micro and nanosystems
Students will learn simple theoretical models, the theoretical background of finite element modeling as well as its application to modeling charge, mass and heat transport in electronic, fluidic and e
MICRO-330: Sensors
Principes physiques et électronique utilisés dans les capteurs. Applications des capteurs.
EE-345: Radiation and antennas
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
EE-567: Semiconductor devices II
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts. Remark: at least 5 students should be enrolled for the course to be giv
PHYS-636: General aspects of the electronic structure of crystals
The course is aimed at giving a general understanding and building a feeling of what electronic states inside a crystal are.
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-325: Introduction to plasma physics
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
MICRO-470: Scaling laws in micro & nanosystems
This class adresses scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.