Concept

Carry flag

In computer processors the carry flag (usually indicated as the C flag) is a single bit in a system status register/flag register used to indicate when an arithmetic carry or borrow has been generated out of the most significant arithmetic logic unit (ALU) bit position. The carry flag enables numbers larger than a single ALU width to be added/subtracted by carrying (adding) a binary digit from a partial addition/subtraction to the least significant bit position of a more significant word. This is typically programmed by the user of the processor on the assembly or machine code level, but can also happen internally in certain processors, via digital logic or microcode, where some processors have wider registers and arithmetic instructions than (combinatorial, or "physical") ALU. It is also used to extend bit shifts and rotates in a similar manner on many processors (sometimes done via a dedicated flag). For subtractive operations, two (opposite) conventions are employed as most machines set the carry flag on borrow while some machines (such as the 6502 and the PIC) instead reset the carry flag on borrow (and vice versa). The carry flag is affected by the result of most arithmetic (and typically several bit wise) instructions and is also used as an input to many of them. Several of these instructions have two forms which either read or ignore the carry. In assembly languages these instructions are represented by mnemonics such as ADD/SUB, ADC/SBC (ADD/SUB including carry), SHL/SHR (bit shifts), ROL/ROR (bit rotates), RCR/RCL (rotate through carry), and so on. The use of the carry flag in this manner enables multi-word add, subtract, shift, and rotate operations. An example is what happens if one were to add 255 and 255 using 8-bit registers. The result should be 510 which is the 9-bit value 111111110 in binary. The 8 least significant bits always stored in the register would be 11111110 binary (254 decimal) but since there is carry out of bit 7 (the eight bit), the carry is set, indicating that the result needs 9 bits.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.