Concept

Duality (electrical circuits)

In electrical engineering, electrical terms are associated into pairs called duals. A dual of a relationship is formed by interchanging voltage and current in an expression. The dual expression thus produced is of the same form, and the reason that the dual is always a valid statement can be traced to the duality of electricity and magnetism. Here is a partial list of electrical dualities: voltage – current parallel – serial (circuits) resistance – conductance voltage division – current division impedance – admittance capacitance – inductance reactance – susceptance short circuit – open circuit Kirchhoff's current law – Kirchhoff's voltage law. Thévenin's theorem – Norton's theorem The use of duality in circuit theory is due to Alexander Russell who published his ideas in 1904.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
EE-406: Fundamentals of electrical circuits and systems I
This course gives you an introduction to signal processing, focusing on the Fourier transform, on signal sampling and reconstruction and the Discrete Fourier transform.
EE-407: Fundamentals of electrical circuits and systems II
This course provides an introduction to the theory and analysis methods of electrical circuits.
MICRO-100: Electrotechnics I
Le cours aborde les bases des circuits électriques composés d'éléments linéaires, en régime continu. Une série de méthodes de transformations sera traitée. Le régime alternatif est traité en fin de se
Show more
Related publications (17)
Related people (2)
Related concepts (7)
Thévenin's theorem
As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source Vth in a series connection with a resistance Rth." The equivalent voltage Vth is the voltage obtained at terminals A–B of the network with terminals A–B open circuited.
Voltage divider
In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.
Series and parallel circuits
Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component (e.g. a resistor) or an electrical network (e.g. resistors in series) is a matter of perspective. This article will use "component" to refer to a two-terminal "object" that participate in the series/parallel networks.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.