**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Spline interpolation

Summary

In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-ten polynomial to all of them. Spline interpolation is often preferred over polynomial interpolation because the interpolation error can be made small even when using low-degree polynomials for the spline. Spline interpolation also avoids the problem of Runge's phenomenon, in which oscillation can occur between points when interpolating using high-degree polynomials.
Originally, spline was a term for elastic rulers that were bent to pass through a number of predefined points, or knots. These were used to make technical drawings for shipbuilding and construction by hand, as illustrated in the figure.
We wish to model similar kinds of curves using a set of mathematical equations. Assume we have a sequence of knots, through . There will be a cubic polynomial between each successive pair of knots and connecting to both of them, where . So there will be polynomials, with the first polynomial starting at , and the last polynomial ending at .
The curvature of any curve is defined as
where and are the first and second derivatives of with respect to .
To make the spline take a shape that minimizes the bending (under the constraint of passing through all knots), we will define both and to be continuous everywhere, including at the knots. Each successive polynomial must have equal values (which are equal to the y-value of the corresponding datapoint), derivatives, and second derivatives at their joining knots, which is to say that
This can only be achieved if polynomials of degree 3 (cubic polynomials) or higher are used. The classical approach is to use polynomials of exactly degree 3 — cubic splines.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (9)

Related publications (200)

Related people (34)

Related courses (25)

Related MOOCs (4)

Related units (9)

Related lectures (82)

Spline (mathematics)

In mathematics, a spline is a special function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees. In the computer science subfields of computer-aided design and computer graphics, the term spline more frequently refers to a piecewise polynomial (parametric) curve.

Cubic Hermite spline

In numerical analysis, a cubic Hermite spline or cubic Hermite interpolator is a spline where each piece is a third-degree polynomial specified in Hermite form, that is, by its values and first derivatives at the end points of the corresponding domain interval. Cubic Hermite splines are typically used for interpolation of numeric data specified at given argument values , to obtain a continuous function. The data should consist of the desired function value and derivative at each .

Multivariate interpolation

In numerical analysis, multivariate interpolation is interpolation on functions of more than one variable (multivariate functions); when the variates are spatial coordinates, it is also known as spatial interpolation. The function to be interpolated is known at given points and the interpolation problem consists of yielding values at arbitrary points . Multivariate interpolation is particularly important in geostatistics, where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or depths in a hydrographic survey).

MATH-250: Numerical analysis

Construction et analyse de méthodes numériques pour la solution de problèmes d'approximation, d'algèbre linéaire et d'analyse

CIVIL-321: Numerical modelling of solids and structures

La modélisation numérique des solides est abordée à travers la méthode des éléments finis. Les aspects purement analytiques sont d'abord présentés, puis les moyens d'interpolation, d'intégration et de

MATH-408: Regression methods

General graduate course on regression methods

Introduction to Geographic Information Systems (part 2)

Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra

Introduction to Geographic Information Systems (part 2)

Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra

Geographical Information Systems 2

This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS).
It offers an introduction to GIS that does not require prior compu

Error Analysis and Interpolation

Explores error analysis and limitations in interpolation on evenly distributed nodes.

Splines: Least-Squares Method

Explores splines, emphasizing the least-squares method for interpolating splines and demonstrating its application using MATLAB.

Detailed chemical abundances of very metal-poor (VMP; [Fe/H] < -2) stars are important for better understanding the first stars, early star formation, and chemical enrichment of galaxies. Big on-going and coming high-resolution spectroscopic surveys provid ...

Stefano Alberti, Jean-Philippe Hogge, Joaquim Loizu Cisquella, Jérémy Genoud, Francesco Romano

This paper presents the new 2D electrostatic particle-in-cell code FENNECS de- veloped to study the formation of magnetized non-neutral plasmas in geometries with azimuthal symmetry. This code has been developed in the domain of gy- rotron electron gun des ...

2024This study compares three imputation methods applied to the field observations of hydraulic head in subsurface hydrology. Hydrogeological studies that analyze the timeseries of groundwater elevations often face issues with missing data that may mislead bot ...