In mathematical logic, the Borel hierarchy is a stratification of the Borel algebra generated by the open subsets of a Polish space; elements of this algebra are called Borel sets. Each Borel set is assigned a unique countable ordinal number called the rank of the Borel set. The Borel hierarchy is of particular interest in descriptive set theory.
One common use of the Borel hierarchy is to prove facts about the Borel sets using transfinite induction on rank. Properties of sets of small finite ranks are important in measure theory and analysis.
Borel set
The Borel algebra in an arbitrary topological space is the smallest collection of subsets of the space that contains the open sets and is closed under countable unions and complementation. It can be shown that the Borel algebra is closed under countable intersections as well.
A short proof that the Borel algebra is well defined proceeds by showing that the entire powerset of the space is closed under complements and countable unions, and thus the Borel algebra is the intersection of all families of subsets of the space that have these closure properties. This proof does not give a simple procedure for determining whether a set is Borel. A motivation for the Borel hierarchy is to provide a more explicit characterization of the Borel sets.
The Borel hierarchy or boldface Borel hierarchy on a space X consists of classes , , and for every countable ordinal greater than zero. Each of these classes consists of subsets of X. The classes are defined inductively from the following rules:
A set is in if and only if it is open.
A set is in if and only if its complement is in .
A set is in for if and only if there is a sequence of sets such that each is in for some and .
A set is in if and only if it is both in and in .
The motivation for the hierarchy is to follow the way in which a Borel set could be constructed from open sets using complementation and countable unions.
A Borel set is said to have finite rank if it is in for some finite ordinal ; otherwise it has infinite rank.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a point is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of definability property; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Descriptive set theory begins with the study of Polish spaces and their Borel sets.
Effective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive set theory combines descriptive set theory with recursion theory. Effective Polish space An effective Polish space is a complete separable metric space that has a computable presentation. Such spaces are studied in both effective descriptive set theory and in constructive analysis.
Covers the basics of probability theory, including probability spaces, random variables, and measures.
Explores toughening mechanisms, resistance curves, stress intensity analysis, and energy dissipation in fracture mechanics and fiber-reinforced composites.