In , a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for in arbitrary . It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.
A in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the is not.
Let V be a finite-dimensional vector space over some field K. The standard notion of a dual vector space V∗ has the following property: for any K-vector spaces U and W there is an adjunction HomK(U ⊗ V,W) = HomK(U, V∗ ⊗ W), and this characterizes V∗ up to a unique isomorphism. This expression makes sense in any category with an appropriate replacement for the tensor product of vector spaces. For any (C, ⊗) one may attempt to define a dual of an object V to be an object V∗ ∈ C with a natural isomorphism of bifunctors
HomC((–)1 ⊗ V, (–)2) → HomC((–)1, V∗ ⊗ (–)2)
For a well-behaved notion of duality, this map should be not only natural in the sense of category theory, but also respect the monoidal structure in some way. An actual definition of a dual object is thus more complicated.
In a C, i.e. a monoidal category with an internal Hom functor, an alternative approach is to simulate the standard definition of a dual vector space as a space of functionals. For an object V ∈ C define V∗ to be , where 1C is the monoidal identity. In some cases, this object will be a dual object to V in a sense above, but in general it leads to a different theory.
Consider an object in a . The object is called a left dual of if there exist two morphisms
called the coevaluation, and , called the evaluation,
such that the following two diagrams commute:
The object is called the right dual of .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In , a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the having finite-dimensional vector spaces as s and linear maps as s, with tensor product as the structure. Another example is , the category having sets as objects and relations as morphisms, with .
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings.
In mathematics, a monoidal category (or tensor category) is a equipped with a bifunctor that is associative up to a natural isomorphism, and an I that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant s commute. The ordinary tensor product makes vector spaces, abelian groups, R-modules, or R-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples.
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
Visual estimates of stimulus features are systematically biased toward the features of previously encountered stimuli. Such serial dependencies have often been linked to how the brain maintains perceptual continuity. However, serial dependence has mostly b ...
Object detection plays a critical role in various computer vision applications, encompassingdomains like autonomous vehicles, object tracking, and scene understanding. These applica-tions rely on detectors that generate bounding boxes around known object c ...
EPFL2023
We prove, in a purely combinatorial way, the spectral curve topological recursion for the problem of enumeration of bi-colored maps, which are dual objects to dessins d'enfant. Furthermore, we give a proof of the quantum spectral curve equation for this pr ...