In , a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for in arbitrary . It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.
A in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the is not.
Let V be a finite-dimensional vector space over some field K. The standard notion of a dual vector space V∗ has the following property: for any K-vector spaces U and W there is an adjunction HomK(U ⊗ V,W) = HomK(U, V∗ ⊗ W), and this characterizes V∗ up to a unique isomorphism. This expression makes sense in any category with an appropriate replacement for the tensor product of vector spaces. For any (C, ⊗) one may attempt to define a dual of an object V to be an object V∗ ∈ C with a natural isomorphism of bifunctors
HomC((–)1 ⊗ V, (–)2) → HomC((–)1, V∗ ⊗ (–)2)
For a well-behaved notion of duality, this map should be not only natural in the sense of category theory, but also respect the monoidal structure in some way. An actual definition of a dual object is thus more complicated.
In a C, i.e. a monoidal category with an internal Hom functor, an alternative approach is to simulate the standard definition of a dual vector space as a space of functionals. For an object V ∈ C define V∗ to be , where 1C is the monoidal identity. In some cases, this object will be a dual object to V in a sense above, but in general it leads to a different theory.
Consider an object in a . The object is called a left dual of if there exist two morphisms
called the coevaluation, and , called the evaluation,
such that the following two diagrams commute:
The object is called the right dual of .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
In , a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the having finite-dimensional vector spaces as s and linear maps as s, with tensor product as the structure. Another example is , the category having sets as objects and relations as morphisms, with .
thumb|Dual d'un cube : un octaèdre. En mathématiques, le mot dualité a de nombreuses utilisations. Une dualité est définie à l'intérieur d'une famille d'objets mathématiques, c'est-à-dire qu'à tout objet de on associe un autre objet de . On dit que est le dual de et que est le primal de . Si (par = on peut sous-entendre des relations d'isomorphies complexes), on dit que est autodual. Dans de nombreux cas de dualité, le dual du dual est le primal. Ainsi, par exemple, le concept de complémentaire d'un ensemble pourrait être vu comme le premier des concepts de dualité.
En mathématiques, une catégorie monoïdale est une catégorie munie d'un bifoncteur qui généralise la notion de produit tensoriel de deux structures algébriques. Intuitivement, il s'agit de l'analogue, au niveau des catégories, de la notion de monoïde, c'est-à-dire que le bifoncteur joue le rôle d'une sorte de multiplication pour les objets de la catégorie. Une catégorie monoïdale est une catégorie munie : D'un bifoncteur appelé produit tensoriel. D'un objet I appartenant à appelé « objet unité ».
Algebraic geometry is the common language for many branches of modern research in mathematics. This course gives an introduction to this field by studying algebraic curves and their intersection theor
Visual estimates of stimulus features are systematically biased toward the features of previously encountered stimuli. Such serial dependencies have often been linked to how the brain maintains perceptual continuity. However, serial dependence has mostly b ...
We prove, in a purely combinatorial way, the spectral curve topological recursion for the problem of enumeration of bi-colored maps, which are dual objects to dessins d'enfant. Furthermore, we give a proof of the quantum spectral curve equation for this pr ...
OXFORD UNIV PRESS2018
Object detection plays a critical role in various computer vision applications, encompassingdomains like autonomous vehicles, object tracking, and scene understanding. These applica-tions rely on detectors that generate bounding boxes around known object c ...