Earth's climate system is a complex system having five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things). Climate is the statistical characterization of the climate system, representing the average weather, typically over a period of 30 years, and is determined by a combination of processes in the climate system, such as ocean currents and wind patterns. Circulation in the atmosphere and oceans is primarily driven by solar radiation and transports heat from the tropical regions to regions that receive less energy from the Sun. The water cycle also moves energy throughout the climate system. In addition, different chemical elements, necessary for life, are constantly recycled between the different components.
The climate system can change due to internal variability and external forcings. These external forcings can be natural, such as variations in solar intensity and volcanic eruptions, or caused by humans. Accumulation of heat-trapping greenhouse gases, mainly being emitted by people burning fossil fuels, is causing global warming. Human activity also releases cooling aerosols, but their net effect is far less than that of greenhouse gases. Changes can be amplified by feedback processes in the different climate system components.
The atmosphere envelops the earth and extends hundreds of kilometres from the surface. It consists mostly of inert nitrogen (78%), oxygen (21%) and argon (0.9%). Some trace gases in the atmosphere, such as water vapour and carbon dioxide, are the gases most important for the workings of the climate system, as they are greenhouse gases which allow visible light from the Sun to penetrate to the surface, but block some of the infrared radiation the Earth's surface emits to balance the Sun's radiation. This causes surface temperatures to rise. The hydrological cycle is the movement of water through the atmosphere.