Summary
In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena. These phases may consist of one chemical component (e.g. flow of water and water vapour), or several different chemical components (e.g. flow of oil and water). A phase is classified as continuous if it occupies a continually connected region of space (as opposed to disperse if the phase occupies disconnected regions of space). The continuous phase may be either gaseous or a liquid. The disperse phase can consist of a solid, liquid or gas. Two general topologies can be identified: disperse flows and separated flows. The former consists of finite particles, drops or bubbles distributed within a continuous phase, whereas the latter consists of two or more continuous streams of fluids separated by interfaces. The study of multiphase flow is strongly linked to the development of fluid mechanics and thermodynamics. A key early discovery was made by Archimedes of Syracuse (250 BCE) who postulated the laws of buoyancy, which became known as the Archimedes' principle – which is used in modelling multiphase flow. In the mid-20th century, advances in nucleate boiling were developed and the first two-phase pressure-drop models were formed, primarily for the chemical and process industries. In particular, Lockhart and Martinelli (1949) presented a model for frictional pressure drop in horizontal, separated two-phase flow, introducing a parameter that is still utilised today. Between 1950 and 1960, intensive work in the aerospace and nuclear sectors triggered further studies into two-phase flow. In 1958 one of the earliest systematic studies of two-phase flow was undertaken by Soviet scientist Teletov. Baker (1965) conducted studies into vertical flow regimes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (18)
Related concepts (4)
Computational fluid dynamics
Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid (liquids and gases) with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems.
Multiphase flow
In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena. These phases may consist of one chemical component (e.g. flow of water and water vapour), or several different chemical components (e.g. flow of oil and water).
Fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.
Show more
Related lectures (12)
Freed Interfaces: Volume of Freed, Level Set, Deforming Mesh
Explores methods for characterizing freed interfaces in multiphase flows.
Viscous Beads Flowing Down a Vertical Fibre
Delves into the dynamics of fluid flowing down a vertical fibre, forming droplets under gravity and exhibiting various flow regimes.
Condensation Physics III / Flow Boiling I
Explores condensation physics, flow boiling, lubricant-infused surfaces, heat transfer enhancement, wicking condensation, and flow regimes.
Show more