Concept

Proton magnetometer

Summary
A proton magnetometer, also known as a proton precession magnetometer (PPM), uses the principle of Earth's field nuclear magnetic resonance (EFNMR) to measure very small variations in the Earth's magnetic field, allowing ferrous objects on land and at sea to be detected. It is used in land-based archaeology to map the positions of demolished walls and buildings, and at sea to locate wrecked ships, sometimes for recreational diving. PPMs were once widely used in mineral exploration. They have largely been superseded by Overhauser effect magnetometers and alkali vapour (cesium, rubidium, and potassium) or helium magnetometers, which sample faster and are more sensitive. A direct current flowing in a solenoid creates a strong magnetic field around a hydrogen-rich fluid (kerosine and decane are popular; water can also be used), causing some of the protons to align with that field. The current is then interrupted, and as protons realign themselves with the ambient magnetic field, they precess at a frequency that is directly proportional to the magnetic field. This produces a weak rotating magnetic field that is picked up by a (sometimes separate) inductor, amplified electronically, and fed to a digital frequency counter whose output is typically scaled and displayed directly as field strength or output as digital data. The relationship between the frequency of the induced current and the strength of the magnetic field is called the proton gyromagnetic ratio, and is equal to 0.042576 Hz nT−1. Because the precession frequency depends only on atomic constants and the strength of the ambient magnetic field, the accuracy of this type of magnetometer can reach 1 ppm. The frequency of Earth's field NMR for protons varies between approximately 900 Hz near the equator to 4.2 kHz near the geomagnetic poles. These magnetometers can be moderately sensitive if several tens of watts are available to power the aligning process. If measurements are taken once per second, standard deviations in the readings is in the 0.01 nT to 0.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.