Summary
Silyl enol ethers in organic chemistry are a class of organic compounds that share a common functional group composed of an enolate bonded through its oxygen end to an organosilicon group. They are important intermediates in organic synthesis. Silyl enol ethers are generally prepared by reacting an enolizable carbonyl compound with a silyl electrophile and a base, or just reacting an enolate with a silyl electrophile. Since silyl electrophiles are hard and silicon-oxygen bonds are very strong, the oxygen (of the carbonyl compound or enolate) acts as the nucleophile to form a Si-O single bond. The most commonly used silyl electrophile is trimethylsilyl chloride. To increase the rate of reaction, trimethylsilyl triflate may also be used in the place of trimethylsilyl chloride as a more electrophilic substrate. When using an unsymmetrical enolizable carbonyl compound as a substrate, the choice of reaction conditions can help control whether the kinetic or thermodynamic silyl enol ether is preferentially formed. For instance, when using lithium diisopropylamide (LDA), a strong and sterically hindered base, at low temperature (e.g., -78°C), the kinetic silyl enol ether (with a less substituted double bond) preferentially forms due to sterics. When using triethylamine, a weak base, the thermodynamic silyl enol ether (with a more substituted double bond) is preferred. Alternatively, a rather exotic way of generating silyl enol ethers is via the Brook rearrangement of appropriate substrates. Silyl enol ethers are neutral, mild nucleophiles (milder than enamines) that react with good electrophiles such as aldehydes (with Lewis acid catalysis) and carbocations. Silyl enol ethers are stable enough to be isolated, but are usually used immediately after synthesis. Lithium enolates, one of the precursors to silyl enol ethers, can also be generated from silyl enol ethers using methyllithium. The reaction occurs via nucleophilic substitution at the silicon of the silyl enol ether, producing the lithium enolate and tetramethylsilane.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.