Bioluminescence imaging (BLI) is a technology developed over the past decades (1990's and onward). that allows for the noninvasive study of ongoing biological processes Recently, bioluminescence tomography (BLT) has become possible and several systems have become commercially available. In 2011, PerkinElmer acquired one of the most popular lines of optical imaging systems with bioluminescence from Caliper Life Sciences. Bioluminescence is the process of light emission in living organisms. Bioluminescence imaging utilizes native light emission from one of several organisms which bioluminesce, also known as luciferase enzymes. The three main sources are the North American firefly, the sea pansy (and related marine organisms), and bacteria like Photorhabdus luminescens and Vibrio fischeri. The DNA encoding the luminescent protein is incorporated into the laboratory animal either via a viral vector or by creating a transgenic animal. Rodent models of cancer spread can be studied through bioluminescence imaging.for e.g.Mouse models of breast cancer metastasis. Systems derived from the three groups above differ in key ways: Firefly luciferase requires D-luciferin to be injected into the subject prior to imaging. The peak emission wavelength is about 560 nm. Due to the attenuation of blue-green light in tissues, the red-shift (compared to the other systems) of this emission makes detection of firefly luciferase much more sensitive in vivo. Renilla luciferase (from the Sea pansy) requires its substrate, coelenterazine, to be injected as well. As opposed to luciferin, coelenterazine has a lower bioavailability (likely due to MDR1 transporting it out of mammalian cells). Additionally, the peak emission wavelength is about 480 nm. Bacterial luciferase has an advantage in that the lux operon used to express it also encodes the enzymes required for substrate biosynthesis. Although originally believed to be functional only in prokaryotic organisms, where it is widely used for developing bioluminescent pathogens, it has been genetically engineered to work in mammalian expression systems as well.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIO-679: Practical - Suter Lab
Bioluminescence imaging and data analysis Splinkerette PCR (to analyze genomic insertion site of a transgene). The students will obtain theoretical and practical insight into embryonic stem cell biol
CH-332: Medicinal chemistry
Sitting at the crossroad of organic chemistry and medicine, this course outlines how an initial hit compound transitions into a lead candidate, and ultimately a drug, in the modern drug discovery worl
Related publications (21)

Hyperthermic intrathoracic chemotherapy to control malignant pleural mesothelioma

Yameng Hao

OBJECTIVE: Malignant pleural mesothelioma (MPM) is a rare disease that has a poor response to conventional therapy. Hyperthermic intrathoracic chemotherapy (HITOC), a treatment combining fever-range hyperthermia with intrapleural cisplatin chemotherapy, ha ...
EPFL2023

Development of novel tools for imaging of metabolic fluxes in vivo

Tamara Maric

Bioluminescent imaging is a powerful technique that enables imaging in living organisms with high sensitivity, low background signal, low cost and without the need for radioactivity. The emitted photons are produced in the oxidation reaction of luciferin c ...
EPFL2020

Innovative Tools and in vivo Methods for Tuberculosis Drug Discovery and Development

Raphael Christopher Sommer

Worldwide, tuberculosis (TB) is the leading cause of death due to a single infectious agent, claiming 1.6 million human lives and causing >10 million new cases in 2017 alone, mostly in low-income regions. The intracellular pathogen Mycobacterium tuberculos ...
EPFL2019
Show more
Related concepts (1)
Luciferase
Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photoprotein. The name was first used by Raphaël Dubois who invented the words luciferin and luciferase, for the substrate and enzyme, respectively. Both words are derived from the Latin word lucifer, meaning "lightbearer", which in turn is derived from the Latin words for "light" (lux) and "to bring or carry" (ferre).

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.