Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
Chromium metal is valued for its high corrosion resistance and hardness. A major development in steel production was the discovery that steel could be made highly resistant to corrosion and discoloration by adding metallic chromium to form stainless steel. Stainless steel and chrome plating (electroplating with chromium) together comprise 85% of the commercial use. Chromium is also greatly valued as a metal that is able to be highly polished while resisting tarnishing. Polished chromium reflects almost 70% of the visible spectrum, and almost 90% of infrared light. The name of the element is derived from the Greek word χρῶμα, chrōma, meaning color, because many chromium compounds are intensely colored.
Industrial production of chromium proceeds from chromite ore (mostly FeCr2O4) to produce ferrochromium, an iron-chromium alloy, by means of aluminothermic or silicothermic reactions. Ferrochromium is then used to produce alloys such as stainless steel. Pure chromium metal is produced by a different process: roasting and leaching of chromite to separate it from iron, followed by reduction with carbon and then aluminium.
In the United States, trivalent chromium (Cr(III)) ion is considered an essential nutrient in humans for insulin, sugar, and lipid metabolism. However, in 2014, the European Food Safety Authority, acting for the European Union, concluded that there was insufficient evidence for chromium to be recognized as essential.
While chromium metal and Cr(III) ions are considered non-toxic, hexavalent chromium, Cr(VI), is toxic and carcinogenic. According to the European Chemicals Agency (ECHA), chromium trioxide that is used in industrial electroplating processes is a "substance of very high concern" (SVHC).
Abandoned chromium production sites often require environmental cleanup.
Chromium is the fourth transition metal found on the periodic table, and has an electron configuration of [Ar] 3d5 4s1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Iron is a chemical element with the symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, just ahead of oxygen (32.1% and 30.1%, respectively), forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust, being mainly deposited by meteorites in its metallic state, with its ores also being found there.
Lead is a chemical element with the symbol Pb (from the Latin plumbum) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, lead is a shiny gray with a hint of blue. It tarnishes to a dull gray color when exposed to air. Lead has the highest atomic number of any stable element and three of its isotopes are endpoints of major nuclear decay chains of heavier elements.
A metal (from Ancient Greek μέταλλον métallon 'mine, quarry, metal') is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typically ductile (can be drawn into wires) and malleable (they can be hammered into thin sheets). These properties are the result of the metallic bond between the atoms or molecules of the metal. A metal may be a chemical element such as iron; an alloy such as stainless steel; or a molecular compound such as polymeric sulfur nitride.
Background: The relationship between amino acids, B vitamins, and their metabolites with D3-creatine (D3Cr) dilution muscle mass, a more direct measure of skeletal muscle mass, has not been investigated. We aimed to assess associations of plasma metabolite ...
Cary2023
The microstructure evolution associated with the cold forming sequence of an Fe-14Cr-1W-0.3Ti-0.3Y2O3 grade ferritic stainless steel strengthened by dispersion of nano oxides (ODS) was investigated. The material, initially hot extruded at 1100 degrees C an ...
The main strengthening mechanism for Inconel 718 (IN718), a Ni-based superalloy, is precipitation hardening by gamma ' and gamma '' particles. It is thus essential, for good alloy performance, that precipitates with the desired chemical composition have ad ...