The Moon orbits Earth in the prograde direction and completes one revolution relative to the Vernal Equinox and the stars in about 27.32 days (a tropical month and sidereal month) and one revolution relative to the Sun in about 29.53 days (a synodic month). Earth and the Moon orbit about their barycentre (common centre of mass), which lies about from Earth's centre (about 73% of its radius), forming a satellite system called the Earth–Moon system. On average, the distance to the Moon is about from Earth's centre, which corresponds to about 60 Earth radii or 1.282 light-seconds.
With a mean orbital velocity of 1.022 km/s (0.635 miles/s, 2,286 miles/h), the Moon covers a distance approximately its diameter, or about half a degree on the celestial sphere, each hour. The Moon differs from most satellites of other planets in that its orbit is close to the ecliptic plane instead of to its primary's (in this case, Earth's) equatorial plane. The Moon's orbital plane is inclined by about 5.1° with respect to the ecliptic plane, whereas the Moon's equatorial plane is tilted by only 1.5°.
The properties of the orbit described in this section are approximations. The Moon's orbit around Earth has many variations (perturbations) due to the gravitational attraction of the Sun and planets, the study of which (lunar theory) has a long history.
The orbit of the Moon is a nearly circular ellipse about the Earth (the semimajor and semiminor axes are 384,400 km and 383,800 km, respectively: a difference of only 0.16%). The equation of the ellipse yields an eccentricity of 0.0549 and perigee and apogee distances of 362,600 km (225,300 mi) and 405,400 km (251,900 mi) respectively (a difference of 12%).
Since nearer objects appear larger, the Moon's apparent size changes as it moves toward and away from an observer on Earth. An event referred to as a "supermoon" occurs when the full Moon is at its closest to Earth (perigee). The largest possible apparent diameter of the Moon is the same 12% larger (as perigee versus apogee distances) than the smallest; the apparent area is 25% more and so is the amount of light it reflects toward Earth.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
A quoi peut servir un.e architecte ?
Nous réfléchirons ensemble à cette question à travers un projet de réinvention et réhabilitation de l'Institut Thérapeutique Educatif et Pédagogique (ITEP) les Éve
A quoi peut servir un.e architecte ?
Nous réfléchirons ensemble à cette question à travers un projet de réinvention et réhabilitation de l'Institut Thérapeutique Educatif et Pédagogique (ITEP) les Éve
A lunar node is either of the two orbital nodes of the Moon, that is, the two points at which the orbit of the Moon intersects the ecliptic. The ascending (or north) node is where the Moon moves into the northern ecliptic hemisphere, while the descending (or south) node is where the Moon enters the southern ecliptic hemisphere. A lunar eclipse can occur only when the full Moon is near either lunar node (within 11° 38' ecliptic longitude), while a solar eclipse can occur only when the new Moon is near either lunar node (within 17° 25').
A lunar standstill or lunistice is when the moon reaches its furthest north or furthest south point during the course of a month (specifically a draconic month of about 27.2 days). The declination (a celestial coordinate measured as the angle from the celestial equator, analogous to latitude) at lunar standstill varies in a cycle 18.6 years long between 18.134° (north or south) and 28.725° (north or south), due to lunar precession. These extremes are called the minor and major lunar standstills.
In lunar calendars, a lunar month is the time between two successive syzygies of the same type: new moons or full moons. The precise definition varies, especially for the beginning of the month. In Shona, Middle Eastern, and European traditions, the month starts when the young crescent moon first becomes visible, at evening, after conjunction with the Sun one or two days before that evening (e.g., in the Islamic calendar). In ancient Egypt, the lunar month began on the day when the waning moon could no longer be seen just before sunrise.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Learn about the physical phenomena at play in astronomical objects and link theoretical predictions to observations.
The main goal of my research is to establish guidelines for workplace design based on human biomechanics: specifically sitting workplaces and handling areas in 1/6G-1/3G (Moon, Mars) conditions. Such a workplace could be used in long-term space missions in ...
The project was initiated by the Moon Village Association (MVA). It is a non-governmental association which regulates the exploration program of lunar missions. The MVA also works on the development of space technologies: the Payload1 project is a part of ...
2022
, , ,
The prediction of trajectories of buoyancy-driven objects immersed in a viscous fluid is a key problem in fluid dynamics. Simple-shaped objects, such as disks, present a great variety of trajectories, ranging from zig-zag to tumbling and chaotic motions. Y ...