In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region.
The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the problem can be stated as follows:
Given a function f that has values everywhere on the boundary of a region in Rn, is there a unique continuous function u twice continuously differentiable in the interior and continuous on the boundary, such that u is harmonic in the interior and u = f on the boundary?
This requirement is called the Dirichlet boundary condition. The main issue is to prove the existence of a solution; uniqueness can be proven using the maximum principle.
The Dirichlet problem goes back to George Green, who studied the problem on general domains with general boundary conditions in his Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, published in 1828. He reduced the problem into a problem of constructing what we now call Green's functions, and argued that Green's function exists for any domain. His methods were not rigorous by today's standards, but the ideas were highly influential in the subsequent developments. The next steps in the study of the Dirichlet's problem were taken by Karl Friedrich Gauss, William Thomson (Lord Kelvin) and Peter Gustav Lejeune Dirichlet, after whom the problem was named, and the solution to the problem (at least for the ball) using the Poisson kernel was known to Dirichlet (judging by his 1850 paper submitted to the Prussian academy). Lord Kelvin and Dirichlet suggested a solution to the problem by a variational method based on the minimization of "Dirichlet's energy". According to Hans Freudenthal (in the Dictionary of Scientific Biography, vol. 11), Bernhard Riemann was the first mathematician who solved this variational problem based on a method which he called Dirichlet's principle.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
This is an introductory course on Elliptic Partial Differential Equations. The course will cover the theory of both classical and generalized (weak) solutions of elliptic PDEs.
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
In the study of differential equations, a boundary-value problem is a differential equation subjected to constraints called boundary conditions. A solution to a boundary value problem is a solution to the differential equation which also satisfies the boundary conditions. Boundary value problems arise in several branches of physics as any physical differential equation will have them. Problems involving the wave equation, such as the determination of normal modes, are often stated as boundary value problems.
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).
In this paper, we consider the first eigenvalue.1(O) of the Grushin operator.G :=.x1 + |x1|2s.x2 with Dirichlet boundary conditions on a bounded domain O of Rd = R d1+ d2. We prove that.1(O) admits a unique minimizer in the class of domains with prescribed ...
WALTER DE GRUYTER GMBH2023
We prove that the set of-y-thick points of a planar Gaussian free field (GFF) with Dirichlet boundary conditions is a.s. totally disconnected for all-y =6 0. Our proof relies on the coupling between a GFF and the nested CLE4. In particular, we show that th ...
We study the hitting probabilities of the solution to a system of d stochastic heat equations with additive noise subject to Dirichlet boundary conditions. We show that for any bounded Borel set with positive (d-6)\documentclass[12pt]{minimal} \usepackage{ ...