Early Earth is loosely defined as Earth in its first one billion years, or gigayear (Ga, 109y). Early Earth is defined as encompassing approximately the first gigayear in the evolution of the planet from its initial formation in the young Solar System at about 4.55 Ga to sometime in the Archean eon in approximately 3.5 Ga. On the geologic time scale, this comprises all of the Hadean eon, starting with the formation of the Earth about 4.6 billion years ago, and the Eoarchean, starting 4 billion years ago, and part of the Paleoarchean era, starting 3.6 billion years ago, of the Archean eon. This period of Earth's history involved the planet's formation from the solar nebula via a process known as accretion. This time period included intense meteorite bombardment as well as giant impacts, including the Moon-forming impact, which resulted in a series of magma oceans and episodes of core formation. After formation of the core, delivery of meteoritic or cometary material in a "late veneer" may have delivered water and other volatile compounds to the Earth. Although little crustal material from this period survives, the oldest dated specimen is a zircon mineral of 4.404 ± 0.008 Ga enclosed in a metamorphosed sandstone conglomerate in the Jack Hills of the Narryer Gneiss Terrane of Western Australia. The earliest supracrustals (such as the Isua greenstone belt) date from the latter half of this period, about 3.8 gya, around the same time as peak Late Heavy Bombardment. According to evidence from radiometric dating and other sources, Earth formed about 4.54 billion years ago. The current dominant theory of planet formation suggests that planets such as Earth form in about 50 to 100 million years but more recently proposed alternative processes and timescales have stimulated ongoing debate in the planetary science community. For example, in June 2023, one team of scientists reported evidence that Earth may have formed in just three million years.
Paolo De Los Rios, Daniel Maria Busiello, Shiling Liang, Francesco Piazza