Loadable kernel moduleIn computing, a loadable kernel module (LKM) is an that contains code to extend the running kernel, or so-called base kernel, of an operating system. LKMs are typically used to add support for new hardware (as device drivers) and/or s, or for adding system calls. When the functionality provided by an LKM is no longer required, it can be unloaded in order to free memory and other resources.
ChecksumA checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify data integrity but are not relied upon to verify data authenticity. The procedure which generates this checksum is called a checksum function or checksum algorithm. Depending on its design goals, a good checksum algorithm usually outputs a significantly different value, even for small changes made to the input.
InodeThe inode (index node) is a data structure in a that describes a object such as a or a directory. Each inode stores the attributes and disk block locations of the object's data. File-system object attributes may include metadata (times of last change, access, modification), as well as owner and data. A directory is a list of inodes with their assigned names. The list includes an entry for itself, its parent, and each of its children. There has been uncertainty on the Linux kernel mailing list about the reason for the "i" in "inode".
DragonFly BSDDragonFly BSD is a free and open-source Unix-like operating system forked from FreeBSD 4.8. Matthew Dillon, an Amiga developer in the late 1980s and early 1990s and FreeBSD developer between 1994 and 2003, began working on DragonFly BSD in June 2003 and announced it on the FreeBSD mailing lists on 16 July 2003. Dillon started DragonFly in the belief that the techniques adopted for threading and symmetric multiprocessing in FreeBSD 5 would lead to poor performance and maintenance problems.
Extended file attributesExtended file attributes are features that enable users to associate s with metadata not interpreted by the filesystem, whereas regular attributes have a purpose strictly defined by the filesystem (such as or records of creation and modification times). Unlike , which can usually be as large as the maximum file size, extended attributes are usually limited in size to a value significantly smaller than the maximum file size.
RAIDRAID (reɪd; "redundant array of inexpensive disks" or "redundant array of independent disks") is a data storage virtualization technology that combines multiple physical disk drive components into one or more logical units for the purposes of data redundancy, performance improvement, or both. This is in contrast to the previous concept of highly reliable mainframe disk drives referred to as "single large expensive disk" (SLED). Data is distributed across the drives in one of several ways, referred to as RAID levels, depending on the required level of redundancy and performance.
Wear levelingWear leveling (also written as wear levelling) is a technique for prolonging the service life of some kinds of erasable computer storage media, such as flash memory, which is used in solid-state drives (SSDs) and USB flash drives, and phase-change memory. There are several wear leveling mechanisms that provide varying levels of longevity enhancement in such memory systems. The term preemptive wear leveling (PWL) has been used by Western Digital to describe their preservation technique used on hard disk drives (HDDs) designed for storing audio and video data.