Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Transitive relationIn mathematics, a relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Each partial order as well as each equivalence relation needs to be transitive. A homogeneous relation R on the set X is a transitive relation if, for all a, b, c ∈ X, if a R b and b R c, then a R c. Or in terms of first-order logic: where a R b is the infix notation for (a, b) ∈ R. As a non-mathematical example, the relation "is an ancestor of" is transitive.
Asymmetric relationIn mathematics, an asymmetric relation is a binary relation on a set where for all if is related to then is not related to A binary relation on is any subset of Given write if and only if which means that is shorthand for The expression is read as " is related to by " The binary relation is called if for all if is true then is false; that is, if then This can be written in the notation of first-order logic as A logically equivalent definition is: for all at least one of and is , which in first-order logic c
Law of trichotomyIn mathematics, the law of trichotomy states that every real number is either positive, negative, or zero. More generally, a binary relation R on a set X is trichotomous if for all x and y in X, exactly one of xRy, yRx and x = y holds. Writing R as
Converse relationIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Weak orderingIn mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by (strictly) partially ordered sets and preorders.
Cyclic orderIn mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation [a, b, c], meaning "after a, one reaches b before c". For example, [June, October, February], but not [June, February, October], cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected.
Dense orderIn mathematics, a partial order or total order < on a set is said to be dense if, for all and in for which , there is a in such that . That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable. The rational numbers as a linearly ordered set are a densely ordered set in this sense, as are the algebraic numbers, the real numbers, the dyadic rationals and the decimal fractions.
Binary relationIn mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x in X and y in Y. It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation.
Symmetric relationA symmetric relation is a type of binary relation. An example is the relation "is equal to", because if a = b is true then b = a is also true. Formally, a binary relation R over a set X is symmetric if: where the notation means that . If RT represents the converse of R, then R is symmetric if and only if R = RT. Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. "is equal to" (equality) (whereas "is less than" is not symmetric) "is comparable to", for elements of a partially ordered set ".