In mathematics, a partial order or total order < on a set is said to be dense if, for all and in for which , there is a in such that . That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable.
The rational numbers as a linearly ordered set are a densely ordered set in this sense, as are the algebraic numbers, the real numbers, the dyadic rationals and the decimal fractions. In fact, every Archimedean ordered ring extension of the integers is a densely ordered set.
On the other hand, the linear ordering on the integers is not dense.
Cantor's isomorphism theorem
Georg Cantor proved that every two non-empty dense totally ordered countable sets without lower or upper bounds are order-isomorphic. This makes the theory of dense linear orders without bounds an example of an ω-categorical theory where ω is the smallest limit ordinal. For example, there exists an order-isomorphism between the rational numbers and other densely ordered countable sets including the dyadic rationals and the algebraic numbers. The proofs of these results use the back-and-forth method.
Minkowski's question mark function can be used to determine the order isomorphisms between the quadratic algebraic numbers and the rational numbers, and between the rationals and the dyadic rationals.
Any binary relation R is said to be dense if, for all R-related x and y, there is a z such that x and z and also z and y are R-related. Formally:
Alternatively, in terms of composition of R with itself, the dense condition may be expressed as R ⊆ R ; R.
Sufficient conditions for a binary relation R on a set X to be dense are:
R is reflexive;
R is coreflexive;
R is quasireflexive;
R is left or right Euclidean; or
R is symmetric and semi-connex and X has at least 3 elements.
None of them are necessary. For instance, there is a relation R that is not reflexive but dense.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. It maps quadratic irrational numbers to rational numbers on the unit interval, via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the rationals, given by Arnaud Denjoy in 1938. It also maps rational numbers to dyadic rationals, as can be seen by a recursive definition closely related to the Stern–Brocot tree.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
We discuss two extensions to a recently introduced theory of arrays, which are based on considerations coming from the model theory of power structures. First, we discuss how the ordering relation on the index set can be expressed succinctly by referring t ...
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023
We prove an NP upper bound on a theory of integer-indexed integer-valued arrays that extends combi- natory array logic with an ordering relation on the index set and the ability to express sums of elements. We compare our fragment with seven other fragment ...