Concept

Cartesian genetic programming

Cartesian genetic programming is a form of genetic programming that uses a graph representation to encode computer programs. It grew from a method of evolving digital circuits developed by Julian F. Miller and Peter Thomson in 1997. The term ‘Cartesian genetic programming’ first appeared in 1999 and was proposed as a general form of genetic programming in 2000. It is called ‘Cartesian’ because it represents a program using a two-dimensional grid of nodes. Miller's keynote explains how CGP works. He edited a book entitled Cartesian Genetic Programming, published in 2011 by Springer. The open source project dCGP implements a differentiable version of CGP developed at the European Space Agency by Dario Izzo, Francesco Biscani and Alessio Mereta able to approach symbolic regression tasks, to find solution to differential equations, find prime integrals of dynamical systems, represent variable topology artificial neural networks and more.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.