Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness. In any given transaction with a variety of items, association rules are meant to discover the rules that determine how or why certain items are connected.
Based on the concept of strong rules, Rakesh Agrawal, Tomasz Imieliński and Arun Swami introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For example, the rule found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, they are likely to also buy hamburger meat. Such information can be used as the basis for decisions about marketing activities such as, e.g., promotional pricing or product placements.
In addition to the above example from market basket analysis, association rules are employed today in many application areas including Web usage mining, intrusion detection, continuous production, and bioinformatics. In contrast with sequence mining, association rule learning typically does not consider the order of items either within a transaction or across transactions.
The association rule algorithm itself consists of various parameters that can make it difficult for those without some expertise in data mining to execute, with many rules that are arduous to understand.
Following the original definition by Agrawal, Imieliński, Swami the problem of association rule mining is defined as:
Let be a set of binary attributes called items.
Let be a set of transactions called the database.
Each transaction in has a unique transaction ID and contains a subset of the items in .
A rule is defined as an implication of the form:
where .
In Agrawal, Imieliński, Swami a rule is defined only between a set and a single item, for .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students
Learning is observable in animal and human behavior, but learning is also a topic of computer science. This course links algorithms from machine learning with biological phenomena of synaptic plastic
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions (e.g. behavior modeling, classification, data mining, regression, function approximation, or game strategy).
Data mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD.
Explores Association Rule Mining, emphasizing Frequent Itemsets and Alternative Measures of Interest, including the FP-Growth algorithm and performance comparison.
Large-scale seismic risk assessment requires knowledge of the vulnerability of buildings. Under the action of an earthquake, buildings with different properties also behave differently. Since it is not possible to analyze each building individually, it is ...
Maximal subgraph mining is increasingly important in various domains, including bioinformatics, genomics, and chemistry, as it helps identify common characteristics among a set of graphs and enables their classification into different categories. Existing ...
ELSEVIER SCIENCE INC2023
,
Critical Thinking (CrT) is generally characterized as an abstract thinking process, detached from the (bodily) actions one engages in during the process. Though recent cognitive theories assert that all thinking is action-based, the embodied and distribute ...