An antenna tuner is an electronic device inserted into the feedline between a radio transmitter and its antenna. Its purpose is to optimize power transfer by matching the impedance of the radio to the impedance of the end of the feedline connecting the antenna to the transmitter. Various alternate names are used for this device: antenna matching unit, impedance matching unit, matchbox, matching network, transmatch, antenna match, antenna tuning unit (ATU), antenna coupler, feedline coupler. English language technical jargon makes no distinction between the terms. Antenna tuners are particularly important for use with transmitters. Transmitters are typically designed to feed power into a reactance-free, resistive load of a specific value: Essentially all radio transmitters built after the 1950s are designed for 50 Ω (Ohm) output. However the impedance of any antenna normally varies, depending on the frequency and other factors, and consequently changes the signal impedance that appears at the other end of the feedline, where the line connects to the transmitter. In addition to reducing the power radiated by the antenna, an impedance mismatch can distort the signal, and in high power transmitters may overheat either the amplifier or the cores of transformers along the line. To avoid possible damage resulting from applying power into a mismatched load, and prevent self-protection circuits in the amplifier from cutting back the power output, matching networks are a standard part of almost all radio transmitting systems. The system transmatch may be a circuit incorporated into the transmitter itself, a separate piece of equipment connected to the feedline anywhere between the transmitter and the antenna, or a combination of several of these. In transmitting systems with an antenna distant from the transmitter and connected to it by a transmission line (feedline), in addition to a matching unit where the feedline connects to the transmitter, there may be a second matching network (ATU) near the antenna or incorporated into the design of the antenna, to bridge the transmission line impedance over to the antenna's feedpoint impedance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
EE-345: Radiation and antennas
Les antennes sont utilisées dans une multitude d'applications de communications et de détection, demandant des fréquences et propriétés d'antennes très différentes. Ce cours décrit la théorie de base
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, room acoustics, sound propagation, and sound radiation from sources and acoustic antennas. The learning outcomes will be the techniques
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Show more
Related lectures (36)
Antenna Networks and Standing Wave Ratios
Explores antenna networks and standing wave ratios through practical exercises on impedance matching and system performance evaluation.
Radiation and Antennas II
Covers real antennas with losses, mismatched antennas, radiation, and polarization concepts.
Antennas: Openings and Radiation
Explores antennas with openings, equivalent problems, and radiation patterns from thin slits.
Show more
Related concepts (18)
Mast radiator
A mast radiator (or radiating tower) is a radio mast or tower in which the metal structure itself is energized and functions as an antenna. This design, first used widely in the 1930s, is commonly used for transmitting antennas operating at low frequencies, in the LF and MF bands, in particular those used for AM radio broadcasting stations. The conductive steel mast is electrically connected to the transmitter. Its base is usually mounted on a nonconductive support to insulate it from the ground.
Television antenna
A television antenna (TV aerial) is an antenna specifically designed for use with a television receiver (TV) to receive over-the-air broadcast television signals from a television station. Television reception is dependent upon the antenna as well as the transmitter. Terrestrial television is broadcast on frequencies from about 47 to 250 MHz in the very high frequency (VHF) band, and 470 to 960 MHz in the ultra high frequency (UHF) band in different countries.
Antenna feed
A radio transmitter or receiver is connected to an antenna which emits or receives the radio waves. The antenna feed system or antenna feed is the cable or conductor, and other associated equipment, which connects the transmitter or receiver with the antenna and makes the two devices compatible. In a radio transmitter, the transmitter generates an alternating current of radio frequency, and the feed system feeds the current to the antenna, which converts the power in the current to radio waves.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.