High-content screening (HCS), also known as high-content analysis (HCA) or cellomics, is a method that is used in biological research and drug discovery to identify substances such as small molecules, peptides, or RNAi that alter the phenotype of a cell in a desired manner. Hence high content screening is a type of phenotypic screen conducted in cells involving the analysis of whole cells or components of cells with simultaneous readout of several parameters. HCS is related to high-throughput screening (HTS), in which thousands of compounds are tested in parallel for their activity in one or more biological assays, but involves assays of more complex cellular phenotypes as outputs. Phenotypic changes may include increases or decreases in the production of cellular products such as proteins and/or changes in the morphology (visual appearance) of the cell. Hence HCA typically involves automated microscopy and image analysis. Unlike high-content analysis, high-content screening implies a level of throughput which is why the term "screening" differentiates HCS from HCA, which may be high in content but low in throughput.
In high content screening, cells are first incubated with the substance and after a period of time, structures and molecular components of the cells are analyzed. The most common analysis involves labeling proteins with fluorescent tags, and finally changes in cell phenotype are measured using automated . Through the use of fluorescent tags with different absorption and emission maxima, it is possible to measure several different cell components in parallel. Furthermore, the imaging is able to detect changes at a subcellular level (e.g., cytoplasm vs. nucleus vs. other organelles). Therefore, a large number of data points can be collected per cell. In addition to fluorescent labeling, various label free assays have been used in high content screening.
High-content screening (HCS) in cell-based systems uses living cells as tools in biological research to elucidate the workings of normal and diseased cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This combined practical and theoretical course will provide the basics in bioinstrumentation, including the construction of a droplet-microfluidic workstation for high-throughput, single-cell analysis
This course will describe methods underlying translational approaches from disease modeling and characterization to therapeutic applications. The presented techniques will be complemented by hands-on
The course discusses methods in modern drug development. Each week, a short introduction to a drug development method / field is provided and a recent research paper is discussed in depth. Students pa
High-throughput screening (HTS) is a method for scientific experimentation especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handling devices, and sensitive detectors, high-throughput screening allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological tests. Through this process one can quickly recognize active compounds, antibodies, or genes that modulate a particular biomolecular pathway.
In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by serendipitous discovery, as with penicillin. More recently, chemical libraries of synthetic small molecules, natural products or extracts were screened in intact cells or whole organisms to identify substances that had a desirable therapeutic effect in a process known as classical pharmacology.
Mitochondria are essential organelles participating in numerous cellular functions, including energy harvesting, regulation of homeostasis and apoptosis. Changes in mitochondrial number, morphology, and function not only impact cellular metabolism but also ...
Macrocycles provide an attractive modality for drug development but the identification of ligands to targets of interest is hindered by the lack of large macrocyclic compound libraries for high-throughput screening. A strategy to efficiently synthesize lar ...
Topological Weyl semimetals represent a novel class of nontrivial materials, where band crossings with linear dispersions take place at generic momenta across reciprocal space. These crossings give rise to low -energy properties akin to those of Weyl fermi ...