The coma is the nebulous envelope around the nucleus of a comet, formed when the comet passes near the Sun in its highly elliptical orbit. As the comet warms, parts of it sublimate; this gives a comet a diffuse appearance when viewed through telescopes and distinguishes it from stars. The word coma comes from the Greek (), which means "hair" and is the origin of the word comet itself.
The coma is generally made of ice and comet dust. Water composes up to 90% of the volatiles that outflow from the nucleus when the comet is within from the Sun. The H2O parent molecule is destroyed primarily through photodissociation and to a much smaller extent photoionization. The solar wind plays a minor role in the destruction of water compared to photochemistry. Larger dust particles are left along the comet's orbital path while smaller particles are pushed away from the Sun into the comet's tail by light pressure.
On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON). On 2 June 2015, NASA reported that the ALICE spectrograph on the Rosetta space probe studying comet 67P/Churyumov–Gerasimenko determined that electrons (within above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the liberation of water and carbon dioxide molecules released from the comet nucleus into its coma.
Comas typically grow in size as comets approach the Sun, and they can be as large as the diameter of Jupiter, even though the density is very low. About a month after an outburst in October 2007, comet 17P/Holmes briefly had a tenuous dust atmosphere larger than the Sun. The Great Comet of 1811 also had a coma roughly the diameter of the Sun. Even though the coma can become quite large, its size can actually decrease about the time it crosses the orbit of Mars around 1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun. It takes the shape of a vast, bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium. The "bubble" of the heliosphere is continuously "inflated" by plasma originating from the Sun, known as the solar wind. Outside the heliosphere, this solar plasma gives way to the interstellar plasma permeating the Milky Way.
Hydrogen isocyanide is a chemical with the molecular formula HNC. It is a minor tautomer of hydrogen cyanide (HCN). Its importance in the field of astrochemistry is linked to its ubiquity in the interstellar medium. Both hydrogen isocyanide and azanylidyniummethanide are correct IUPAC names for HNC. There is no preferred IUPAC name. The second one is according to the substitutive nomenclature rules, derived from the parent hydride azane () and the anion methanide ().
A comet tail and coma are visible features of a comet when they are illuminated by the Sun and may become visible from Earth when a comet passes through the inner Solar System. As a comet approaches the inner Solar System, solar radiation causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them. Blown solar downwind, two separate tails are formed: one composed of dust and the other of gases; they become visible through different phenomena: the dust reflects sunlight directly, and the gases glow from ionization.
Explores the composition, origin, and tail formation of comets, shedding light on the forces shaping their trajectories and their relevance to star formation.
Energetic particle physics is studied in Alcator C-Mod in reactor relevant regimes with high density and equilibrated electron and ion temperatures. Stable Alfven eigenmodes are excited with low-power active magnetohydrodynamic antennas in the absence of a ...