In telecommunications, in-band signaling is the sending of control information within the same band or channel used for data such as voice or video. This is in contrast to out-of-band signaling which is sent over a different channel, or even over a separate network. In-band signals may often be heard by telephony participants, while out-of-band signals are inaccessible to the user. The term is also used more generally, for example of computer data files that include both literal data, and metadata and/or instructions for how to process the literal data.
When dialing from a land-line telephone, the telephone number is encoded and transmitted across the telephone line in form of dual-tone multi-frequency signaling (DTMF). The tones control the telephone system by instructing the telephone switch where to route the call. These control tones are sent over the same channel, the copper wire, and in the frequency range (300 Hz to 3.4 kHz) as the audio of the telephone call. In-band signaling is also used on older telephone carrier systems to provide inter-exchange information for routing calls. Examples of this kind of in-band signaling system are the Signaling System No. 5 (SS5) and its predecessors, and R2 signalling.
Separating the control signals, also referred to as the control plane, from the data, if a bit-transparent connection is desired, is usually done by escaping the control instructions. Occasionally, however, networks are designed so that data is, to a varying degree, garbled by the signaling. Allowing data to become garbled is usually acceptable when transmitting sounds between humans, since the users rarely notice the slight degradation, but this leads to problems when sending data that has very low error tolerance, such as information transmitted using a modem.
In-band signaling is insecure because it exposes control signals, protocols and management systems to end users, which may result in falsing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A blue box is an electronic device that produces tones used to generate the in-band signaling tones formerly used within the North American long-distance telephone network to send line status and called number information over voice circuits. This allowed an illicit user, referred to as a "phreaker", to place long-distance calls, without using the network's user facilities, that would be billed to another number or dismissed entirely as an incomplete call. A number of similar "color boxes" were also created to control other aspects of the phone network.
A modulator-demodulator or modem is a computer hardware device that converts data from a digital format into a format suitable for an analog transmission medium such as telephone or radio. A modem transmits data by modulating one or more carrier wave signals to encode digital information, while the receiver demodulates the signal to recreate the original digital information. The goal is to produce a signal that can be transmitted easily and decoded reliably.
In telephony, multi-frequency signaling (MF) is a type of signaling that was introduced by the Bell System after World War II. It uses a combination of audible tones for address (telephone number) transport and supervision signaling on trunk lines between central offices. The signaling is sent in-band over the same channel as the bearer channel used for voice traffic. Multi-frequency signaling defines electronic signals that consist of a combination of two audible frequencies, usually selected from a set of six frequencies.
Over the past few decades, incessant growth of Internet networking traffic and High-Performance Computing (HPC) has led to a tremendous demand for data bandwidth. Digital communication technologies combined with advanced integrated circuit scaling trends h ...
The exponential growth of Internet traffic and related demands for higher communication speed pushes processor-to-processor and processor-to-memory interconnects to provide further higher data-rate. Often time, processor-to-memory interconnectsâ speed is ...
In animal communication, signal loudness is often ignored and seldom measured. We used a playback experiment to examine the role of vocal loudness (i.e., sound pressure level) in sibling to sibling communication of nestling barn owls Tyto alba. In this spe ...