CoulombThe coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to 5e27/801088317 elementary charges, , (about 6.241509e18 ). By 1878, the British Association for the Advancement of Science had defined the volt, ohm, and farad, but not the coulomb.
Electric potential energyElectric potential energy is a potential energy (measured in joules) that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system. An object may be said to have electric potential energy by virtue of either its own electric charge or its relative position to other electrically charged objects. The term "electric potential energy" is used to describe the potential energy in systems with time-variant electric fields, while the term "electrostatic potential energy" is used to describe the potential energy in systems with time-invariant electric fields.
Gradient theoremThe gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. For φ : U ⊆ Rn → R as a differentiable function and γ as any continuous curve in U which starts at a point p and ends at a point q, then where ∇φ denotes the gradient vector field of φ.
Galvani potentialIn electrochemistry, the Galvani potential (also called Galvani potential difference, or inner potential difference, Δφ, delta phi) is the electric potential difference between two points in the bulk of two phases. These phases can be two different solids (e.g., two metals joined together), or a solid and a liquid (e.g., a metal electrode submerged in an electrolyte). The Galvani potential is named after Luigi Galvani. First, consider the Galvani potential between two metals.
Charged particleIn physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, which are all believed to have the same charge (except antimatter). Another charged particle may be an atomic nucleus devoid of electrons, such as an alpha particle. A plasma is a collection of charged particles, atomic nuclei and separated electrons, but can also be a gas containing a significant proportion of charged particles.
British Science AssociationThe British Science Association (BSA) is a charity and learned society founded in 1831 to aid in the promotion and development of science. Until 2009 it was known as the British Association for the Advancement of Science (BA). The current Chief Executive is Katherine Mathieson. The BSA's mission is to get more people engaged in the field of science by coordinating, delivering, and overseeing different projects that are suited to achieve these goals.
Field lineA field line is a graphical visual aid for visualizing vector fields. It consists of an imaginary integral curve which is tangent to the field vector at each point along its length. A diagram showing a representative set of neighboring field lines is a common way of depicting a vector field in scientific and mathematical literature; this is called a field line diagram. They are used to show electric fields, magnetic fields, and gravitational fields among many other types.
StatvoltThe statvolt is a unit of voltage and electrical potential used in the CGS-ESU and gaussian systems of units. In terms of its relation to the SI units, one statvolt corresponds to exactly c_cgs e-8volt, i.e. to 299.792458 volts. The statvolt is also defined in the CGS system as 1 erg / statcoulomb. It is a useful unit for electromagnetism because, in a vacuum, an electric field of one statvolt per centimetre has the same energy density as a magnetic field of one gauss.
Retarded potentialIn electrodynamics, the retarded potentials are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past. The fields propagate at the speed of light c, so the delay of the fields connecting cause and effect at earlier and later times is an important factor: the signal takes a finite time to propagate from a point in the charge or current distribution (the point of cause) to another point in space (where the effect is measured), see figure below.
Electrochemical potentialIn electrochemistry, the electrochemical potential (ECP), , is a thermodynamic measure of chemical potential that does not omit the energy contribution of electrostatics. Electrochemical potential is expressed in the unit of J/mol. Each chemical species (for example, "water molecules", "sodium ions", "electrons", etc.) has an electrochemical potential (a quantity with units of energy) at any given point in space, which represents how easy or difficult it is to add more of that species to that location.