The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line.
For φ : U ⊆ Rn → R as a differentiable function and γ as any continuous curve in U which starts at a point p and ends at a point q, then
where ∇φ denotes the gradient vector field of φ.
The gradient theorem implies that line integrals through gradient fields are path-independent. In physics this theorem is one of the ways of defining a conservative force. By placing φ as potential, ∇φ is a conservative field. Work done by conservative forces does not depend on the path followed by the object, but only the end points, as the above equation shows.
The gradient theorem also has an interesting converse: any path-independent vector field can be expressed as the gradient of a scalar field. Just like the gradient theorem itself, this converse has many striking consequences and applications in both pure and applied mathematics.
If φ is a differentiable function from some open subset U ⊆ Rn to R and r is a differentiable function from some closed interval [a, b] to U (Note that r is differentiable at the interval endpoints a and b. To do this, r is defined on an interval that is larger than and includes [a, b].), then by the multivariate chain rule, the composite function φ ∘ r is differentiable on [a, b]:
for all t in [a, b]. Here the ⋅ denotes the usual inner product.
Now suppose the domain U of φ contains the differentiable curve γ with endpoints p and q. (This is oriented in the direction from p to q). If r parametrizes γ for t in [a, b] (i.e., r represents γ as a function of t), then
where the definition of a line integral is used in the first equality, the above equation is used in the second equality, and the second fundamental theorem of calculus is used in the third equality.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
In physics, a force field is a vector field corresponding with a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field , where is the force that a particle would feel if it were at the point . Gravity is the force of attraction between two objects. A gravitational force field models this influence that a massive body (or more generally, any quantity of energy) extends into the space around itself.
In physics, a conservative force is a force with the property that the total work done in moving a particle between two points is independent of the path taken. Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement) by a conservative force is zero. A conservative force depends only on the position of the object.
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
To introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics
Dielectrophoresis (DEP) is a versatile tool for the precise microscale manipulation of a broad range of substances. To unleash the full potential of DEP for the manipulation of complex molecular-sized particulates such as proteins requires the development ...
This paper establishes a mean-field equation set and an energy theorem to provide a theoretical basis in view of the development of self-consistent, physics-based turbulent transport models for mean-field transport codes. A rigorous averaging procedure ide ...
In this paper the loaded polymer transport and its escape via a nanometer size aperture, virtually by nanomembrane, the polymer being moved by an exterior electrostatic field, has been studied. Assuming a linear dependency of the friction coefficient on th ...