A recommender system, or a recommendation system (sometimes replacing 'system' with a synonym such as platform or engine), is a subclass of information filtering system that provide suggestions for items that are most pertinent to a particular user. Typically, the suggestions refer to various decision-making processes, such as what product to purchase, what music to listen to, or what online news to read. Recommender systems are particularly useful when an individual needs to choose an item from a potentially overwhelming number of items that a service may offer.
Recommender systems are used in a variety of areas, with commonly recognised examples taking the form of playlist generators for video and music services, product recommenders for online stores, or content recommenders for social media platforms and open web content recommenders. These systems can operate using a single input, like music, or multiple inputs within and across platforms like news, books and search queries. There are also popular recommender systems for specific topics like restaurants and online dating. Recommender systems have also been developed to explore research articles and experts, collaborators, and financial services.
Recommender systems usually make use of either or both collaborative filtering and content-based filtering (also known as the personality-based approach), as well as other systems such as knowledge-based systems. Collaborative filtering approaches build a model from a user's past behavior (items previously purchased or selected and/or numerical ratings given to those items) as well as similar decisions made by other users. This model is then used to predict items (or ratings for items) that the user may have an interest in. Content-based filtering approaches utilize a series of discrete, pre-tagged characteristics of an item in order to recommend additional items with similar properties.
We can demonstrate the differences between collaborative and content-based filtering by comparing two early music recommender systems – Last.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Metadata (or metainformation) is "data that provides information about other data", but not the content of the data, such as the text of a message or the image itself. There are many distinct types of metadata, including: Descriptive metadata – the descriptive information about a resource. It is used for discovery and identification. It includes elements such as title, abstract, author, and keywords. Structural metadata – metadata about containers of data and indicates how compound objects are put together, for example, how pages are ordered to form chapters.
Collaborative filtering (CF) is a technique used by recommender systems. Collaborative filtering has two senses, a narrow one and a more general one. In the newer, narrower sense, collaborative filtering is a method of making automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating). The underlying assumption of the collaborative filtering approach is that if a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue than that of a randomly chosen person.
User modeling is the subdivision of human–computer interaction which describes the process of building up and modifying a conceptual understanding of the user. The main goal of user modeling is customization and adaptation of systems to the user's specific needs. The system needs to "say the 'right' thing at the 'right' time in the 'right' way". To do so it needs an internal representation of the user. Another common purpose is modeling specific kinds of users, including modeling of their skills and declarative knowledge, for use in automatic software-tests.
The Communication A module of the course on Global Issues tackles challenges
related to instantaneous communication and social media. The interdisciplinary
approach implemented integrates SHS and engi
The Human Language Technology (HLT) course introduces methods and applications for language processing and generation, using statistical learning and neural networks.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
Internet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number
The increasing availability of Massive Open Online Courses (MOOCs) has created a necessity for personalized course recommendation systems. These systems often combine neural networks with Knowledge Graphs (KGs) to achieve richer representations of learners ...
Mapping the technology landscape is crucial for market actors to take informed investment decisions. However, given the large amount of data on the Web and its subsequent information overload, manually retrieving information is a seemingly ineffective and ...
The estimation of visibility is of significant importance in aviation safety and forms part of the measurements rou-tinely collected in real time to provide safety guidelines and decisions. Our work concerns the creation and imple-mentation of a lidar-base ...