Unit

Artificial Intelligence Laboratory

Laboratory
Summary

The Laboratory of Artificial Intelligence (LIA) at EPFL focuses on developing artificial intelligence solutions to help people navigate modern artificial, abstract environments. Their research delves into data-driven approaches using machine learning techniques, with a particular emphasis on game theory for data science, crowdsourcing, and human computation. LIA has made significant contributions to privacy-preserving AI, federated learning, and decentralized oracles for public interest questions. Noteworthy recent achievements include the development of algorithms like Altruistic Matching Heuristic (ALMA) for large-scale distributed resource allocation problems, explanations of AI system actions using generative natural language models, and a new privacy definition called Bayesian Differential Privacy for machine learning.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (911)

Quantifying the Unknown: Data-Driven Approaches and Applications in Energy Systems

Paul Scharnhorst

In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
EPFL2024

Optimization Algorithms for Decentralized, Distributed and Collaborative Machine Learning

Anastasiia Koloskova

Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
EPFL2024

Differentially private multi-agent constraint optimization

Boi Faltings, Sujit Prakash Gujar, Aleksei Triastcyn, Sankarshan Damle

Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as ...
Dordrecht2024
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.