Concept

Computational chemistry

Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion (dihydrogen cation, see references therein for more details), the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials. Examples of such properties are structure (i.e., the expected positions of the constituent atoms), absolute and relative (interaction) energies, electronic charge density distributions, dipoles and higher multipole moments, vibrational frequencies, reactivity, or other spectroscopic quantities, and cross sections for collision with other particles. The methods used cover both static and dynamic situations. In all cases, the computer time and other resources (such as memory and disk space) increase quickly with the size of the system being studied. That system can be a molecule, a group of molecules, or a solid. Computational chemistry methods range from very approximate to highly accurate; the latter is usually feasible for small systems only. Ab initio methods are based entirely on quantum mechanics and basic physical constants. Other methods are called empirical or semi-empirical because they use additional empirical parameters. Both ab initio and semi-empirical approaches involve approximations. These range from simplified forms of the first-principles equations that are easier or faster to solve, to approximations limiting the size of the system (for example, periodic boundary conditions), to fundamental approximations to the underlying equations that are required to achieve any solution to them at all.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (43)
CH-492: Project in molecular sciences Ia
Short research project within one of our laboratories in chemistry at SCGC.
CH-609: Introduction to the ChemInfo ELN of ISIC
This course will be on Electronic Laboratory Notebooks and is aimed at (future) users. Multiple electronic lab notebooks exists. The course will focus on the Cheminfo tools (https://eln.epfl.ch/).
CH-353: Introduction to electronic structure methods
Repetition of the basic concepts of quantum mechanics and main numerical algorithms used for practical implementions. Basic principles of electronic structure methods:Hartree-Fock, many body perturbat
Show more
Related lectures (196)
Quantum Chemistry Applications
Explores quantum chemistry applications, emphasizing the role of electron density in predicting chemical properties and addressing challenges in catalyst design, solar energy conversion, and drug synthesis.
Linear Algebra in Dirac Notation
Covers linear algebra in Dirac notation, focusing on vector spaces and quantum bits.
Quantum Many-Body Dynamics: Artificial Neural Network Approach
Discusses simulating quantum many-body dynamics using artificial neural networks to overcome computational challenges and stabilize solutions.
Show more
Related publications (1,000)

Thermal conductivity of Li 3 PS 4 solid electrolytes with ab initio accuracy

Michele Ceriotti, Federico Grasselli

The vast amount of computational studies on electrical conduction in solid-state electrolytes is not mirrored by comparable efforts addressing thermal conduction, which has been scarcely investigated despite its relevance to thermal management and (over)he ...
Amer Physical Soc2024

Augmenting large language models with chemistry tools

Philippe Schwaller, Oliver Tobias Schilter, Andres Camilo Marulanda Bran, Carlo Baldassari

Large language models (LLMs) have shown strong performance in tasks across domains but struggle with chemistry-related problems. These models also lack access to external knowledge sources, limiting their usefulness in scientific applications. We introduce ...
Nature Portfolio2024

Encoding quantum-chemical knowledge into machine-learning models of complex molecular properties

Ksenia Briling

Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
EPFL2024
Show more
Related concepts (47)
Molecular dynamics
Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields.
Density functional theory
Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density.
Molecular orbital
In chemistry, a molecular orbital (ɒrbədl) is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The terms atomic orbital and molecular orbital were introduced by Robert S. Mulliken in 1932 to mean one-electron orbital wave functions. At an elementary level, they are used to describe the region of space in which a function has a significant amplitude.
Show more
Related MOOCs (24)
Introduction to Discrete Choice Models
The course introduces the theoretical foundations to choice modeling and describes the steps of operational modeling.
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.