Summary
In computer science, an abstract machine is a theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is similar to a mathematical function in that it receives inputs and produces outputs based on predefined rules. Abstract machines vary from literal machines in that they are expected to perform correctly and independently of hardware. Abstract machines are "machines" because they allow step-by-step execution of programmes; they are "abstract" because they ignore many aspects of actual (hardware) machines. A typical abstract machine consists of a definition in terms of input, output, and the set of allowable operations used to turn the former into the latter. They can be used for purely theoretical reasons as well as models for real-world computer systems. In the theory of computation, abstract machines are often used in thought experiments regarding computability or to analyse the complexity of algorithms. This use of abstract machines is fundamental to the field of computational complexity theory, such as finite state machines, Mealy machines, push-down automata, and Turing machines. Abstract machines are generally classified into two types, depending on the number of operations they are allowed to undertake at any one time: deterministic abstract machines and non-deterministic abstract machines. A deterministic abstract machine is a system in which a particular beginning state or condition always yields the same outputs. There is no randomness or variation in how inputs are transformed into outputs. In contrast, a non-deterministic abstract machine can provide various outputs for the same input on different executions. Unlike a deterministic algorithm, which gives the same result for the same input regardless of the number of iterations, a non-deterministic algorithm takes various paths to arrive to different outputs. Non-deterministic algorithms are helpful for obtaining approximate answers when deriving a precise solution using a deterministic approach is difficult or costly.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.