In mathematics, specifically in , an additive category is a C admitting all finitary biproducts.
There are two equivalent definitions of an additive category: One as a category equipped with additional structure, and another as a category equipped with no extra structure but whose objects and morphisms satisfy certain equations.
A category C is preadditive if all its hom-sets are abelian groups and composition of morphisms is bilinear; in other words, C is over the of abelian groups.
In a preadditive category, every finitary (including the empty product, i.e., a final object) is necessarily a coproduct (or initial object in the case of an empty diagram), and hence a biproduct, and conversely every finitary coproduct is necessarily a product (this is a consequence of the definition, not a part of it).
Thus an additive category is equivalently described as a preadditive category admitting all finitary products, or a preadditive category admitting all finitary coproducts.
We give an alternative definition.
Define a semiadditive category to be a category (note: not a preadditive category) which admits a zero object and all binary biproducts. It is then a remarkable theorem that the Hom sets naturally admit an abelian monoid structure. A proof of this fact is given below.
An additive category may then be defined as a semiadditive category in which every morphism has an additive inverse. This then gives the Hom sets an abelian group structure instead of merely an abelian monoid structure.
More generally, one also considers additive for a commutative ring R. These are categories enriched over the monoidal category of and admitting all finitary biproducts.
The original example of an additive category is the Ab. The zero object is the trivial group, the addition of morphisms is given pointwise, and biproducts are given by direct sums.
More generally, every over a ring R is additive, and so in particular, the over a field K is additive.
The algebra of matrices over a ring, thought of as a category as described below, is also additive.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The focus of this reading group is to delve into the concept of the "Magnitude of Metric Spaces". This approach offers an alternative approach to persistent homology to describe a metric space across
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
In mathematics, the Ab has the abelian groups as and group homomorphisms as morphisms. This is the prototype of an : indeed, every can be embedded in Ab. The zero object of Ab is the trivial group {0} which consists only of its neutral element. The monomorphisms in Ab are the injective group homomorphisms, the epimorphisms are the surjective group homomorphisms, and the isomorphisms are the bijective group homomorphisms. Ab is a of Grp, the .
In and its applications to mathematics, a biproduct of a finite collection of , in a with zero objects, is both a and a coproduct. In a the notions of product and coproduct coincide for finite collections of objects. The biproduct is a generalization of finite direct sums of modules. Let C be a with zero morphisms. Given a finite (possibly empty) collection of objects A1, ...
In , the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic to the , which means the definition is the same as the product but with all arrows reversed.
A decomposition of multicorrelation sequences for commuting transformations along primes, Discrete Analysis 2021:4, 27 pp. Szemerédi's theorem asserts that for every positive integer k and every δ>0 there exists n such that every subset of ${1, ...
Cellulose nanocrystals (CNCs) are considered a prospective packaging material to partially replace petroleumbased plastics attributed to their renewability, sustainability, biodegradability, and desirable attributes including transparency, oxygen, and oil ...
ELSEVIER SCI LTD2023
Bayesian Optimization (BO) is typically used to optimize an unknown function f that is noisy and costly to evaluate, by exploiting an acquisition function that must be maximized at each optimization step. Even if provably asymptotically optimal BO algorith ...