The Synchronized Position Hold Engage and Reorient Experimental Satellite (SPHERES) are a series of miniaturized satellites developed by MIT's Space Systems Laboratory for NASA and US Military, to be used as a low-risk, extensible test bed for the development of metrology, formation flight, rendezvous, docking and autonomy algorithms that are critical for future space missions that use distributed spacecraft architecture, such as Terrestrial Planet Finder and Orbital Express. Each SPHERES satellite is an 18-sided polyhedron, with a mass of about 4.1 kg and a diameter of about 21 cm. They can be used in the International Space Station as well as in ground-based laboratories, but not in the vacuum of space. The battery-powered, self-contained units can operate semi-autonomously, using -based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The satellites can communicate with each other and with a control station wirelessly. The built-in features of the satellites can be extended using an expansion port. From 2006, three SPHERES units are being used in the International Space Station for a variety of experiments. The SPHERES Guest Scientist Program allow scientists to conduct new science experiments using SPHERES units, and the Zero Robotics Program allow students to participate in annual competitions that involve developing software to control SPHERES units. The SPHERES program is expected to continue until 2017, and possibly further. The SPHERES project lead to a newer project called Astrobee. The initial development of SPHERES started in 1999, by a team of students at Massachusetts Institute of Technology, as part of an aerospace engineering program. The concept of the satellite was conceived when Professor David Miller challenged the students to develop a device similar to the combat training remote seen in the 1977 movie Star Wars Episode IV: A New Hope and more recently in Star Wars: Episode II – Attack of the Clones.
Mohamed Farhat, Nicolas Dorsaz, Danail Obreschkow, Philipp Kobel, Aurèle De Bosset