In econometrics, the autoregressive conditional heteroskedasticity (ARCH) model is a statistical model for time series data that describes the variance of the current error term or innovation as a function of the actual sizes of the previous time periods' error terms; often the variance is related to the squares of the previous innovations. The ARCH model is appropriate when the error variance in a time series follows an autoregressive (AR) model; if an autoregressive moving average (ARMA) model is assumed for the error variance, the model is a generalized autoregressive conditional heteroskedasticity (GARCH) model.
ARCH models are commonly employed in modeling financial time series that exhibit time-varying volatility and volatility clustering, i.e. periods of swings interspersed with periods of relative calm. ARCH-type models are sometimes considered to be in the family of stochastic volatility models, although this is strictly incorrect since at time t the volatility is completely pre-determined (deterministic) given previous values.
To model a time series using an ARCH process, let denote the error terms (return residuals, with respect to a mean process), i.e. the series terms. These are split into a stochastic piece and a time-dependent standard deviation characterizing the typical size of the terms so that
The random variable is a strong white noise process. The series is modeled by
where and .
An ARCH(q) model can be estimated using ordinary least squares. A method for testing whether the residuals exhibit time-varying heteroskedasticity using the Lagrange multiplier test was proposed by Engle (1982). This procedure is as follows:
Estimate the best fitting autoregressive model AR(q) .
Obtain the squares of the error and regress them on a constant and q lagged values:
where q is the length of ARCH lags.
The null hypothesis is that, in the absence of ARCH components, we have for all . The alternative hypothesis is that, in the presence of ARCH components, at least one of the estimated coefficients must be significant.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We provide a comprehensive overview of the econometric tools that are essential to estimate financial models, both for asset pricing and
for corporate finance.
The objective of this course is to provide a detailed coverage of the standard models for the valuation and hedging of derivatives products such as European options, American options, forward contract
Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets. In general, there exist two separate branches of finance that require advanced quantitative techniques: derivatives pricing on the one hand, and risk and portfolio management on the other. Mathematical finance overlaps heavily with the fields of computational finance and financial engineering.
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart).
In this thesis we address various factors that contribute both theoretically and practically to mitigating supply demand mismatches. The thesis is composed of three chapters, where each chapter is an independent scientific paper. In the first paper, we dev ...
The creation of high fidelity synthetic data has long been an important goal in machine learning, particularly in fields like finance where the lack of available training and test data make it impossible to utilize many of the deep learning techniques whic ...
In this work, we consider the problem of estimating the probability distribution, the quantile or the conditional expectation above the quantile, the so called conditional-value-at-risk, of output quantities of complex random differential models by the MLM ...