In abstract algebra, a decomposition of a module is a way to write a module as a direct sum of modules. A type of a decomposition is often used to define or characterize modules: for example, a semisimple module is a module that has a decomposition into simple modules. Given a ring, the types of decomposition of modules over the ring can also be used to define or characterize the ring: a ring is semisimple if and only if every module over it is a semisimple module.
An indecomposable module is a module that is not a direct sum of two nonzero submodules. Azumaya's theorem states that if a module has an decomposition into modules with local endomorphism rings, then all decompositions into indecomposable modules are equivalent to each other; a special case of this, especially in group theory, is known as the Krull–Schmidt theorem.
A special case of a decomposition of a module is a decomposition of a ring: for example, a ring is semisimple if and only if it is a direct sum (in fact a product) of matrix rings over division rings (this observation is known as the Artin–Wedderburn theorem).
Idempotent element
To give a direct sum decomposition of a module into submodules is the same as to give orthogonal idempotents in the endomorphism ring of the module that sum up to the identity map. Indeed, if , then, for each , the linear endomorphism given by the natural projection followed by the natural inclusion is an idempotent. They are clearly orthogonal to each other ( for ) and they sum up to the identity map:
as endomorphisms (here the summation is well-defined since it is a finite sum at each element of the module). Conversely, each set of orthogonal idempotents such that only finitely many are nonzero for each and determine a direct sum decomposition by taking to be the of .
This fact already puts some constraints on a possible decomposition of a ring: given a ring , suppose there is a decomposition
of as a left module over itself, where are left submodules; i.e., left ideals.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient.
We determine the dimensions of Ext -groups between simple modules and dual generalized Verma modules in singular blocks of parabolic versions of category O for complex semisimple Lie algebras and affine Kac-Moody algebras. ...
Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-modules is non-semisimple. In this thesis, we develop new tech ...
We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...