Concept

Decomposition of a module

In abstract algebra, a decomposition of a module is a way to write a module as a direct sum of modules. A type of a decomposition is often used to define or characterize modules: for example, a semisimple module is a module that has a decomposition into simple modules. Given a ring, the types of decomposition of modules over the ring can also be used to define or characterize the ring: a ring is semisimple if and only if every module over it is a semisimple module. An indecomposable module is a module that is not a direct sum of two nonzero submodules. Azumaya's theorem states that if a module has an decomposition into modules with local endomorphism rings, then all decompositions into indecomposable modules are equivalent to each other; a special case of this, especially in group theory, is known as the Krull–Schmidt theorem. A special case of a decomposition of a module is a decomposition of a ring: for example, a ring is semisimple if and only if it is a direct sum (in fact a product) of matrix rings over division rings (this observation is known as the Artin–Wedderburn theorem). Idempotent element To give a direct sum decomposition of a module into submodules is the same as to give orthogonal idempotents in the endomorphism ring of the module that sum up to the identity map. Indeed, if , then, for each , the linear endomorphism given by the natural projection followed by the natural inclusion is an idempotent. They are clearly orthogonal to each other ( for ) and they sum up to the identity map: as endomorphisms (here the summation is well-defined since it is a finite sum at each element of the module). Conversely, each set of orthogonal idempotents such that only finitely many are nonzero for each and determine a direct sum decomposition by taking to be the of . This fact already puts some constraints on a possible decomposition of a ring: given a ring , suppose there is a decomposition of as a left module over itself, where are left submodules; i.e., left ideals.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.