In mathematics, a spiral is a curve which emanates from a point, moving farther away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects.
Two major definitions of "spiral" in the American Heritage Dictionary are:
a curve on a plane that winds around a fixed center point at a continuously increasing or decreasing distance from the point.
a three-dimensional curve that turns around an axis at a constant or continuously varying distance while moving parallel to the axis; a helix.
The first definition describes a planar curve, that extends in both of the perpendicular directions within its plane; the groove on one side of a record closely approximates a plane spiral (and it is by the finite width and depth of the groove, but not by the wider spacing between than within tracks, that it falls short of being a perfect example); note that successive loops differ in diameter. In another example, the "center lines" of the arms of a spiral galaxy trace logarithmic spirals.
The second definition includes two kinds of 3-dimensional relatives of spirals:
a conical or volute spring (including the spring used to hold and make contact with the negative terminals of AA or AAA batteries in a battery box), and the vortex that is created when water is draining in a sink is often described as a spiral, or as a conical helix.
quite explicitly, definition 2 also includes a cylindrical coil spring and a strand of DNA, both of which are quite helical, so that "helix" is a more useful description than "spiral" for each of them; in general, "spiral" is seldom applied if successive "loops" of a curve have the same diameter.
In the side picture, the black curve at the bottom is an Archimedean spiral, while the green curve is a helix. The curve shown in red is a conic helix.
List of spirals
A two-dimensional, or plane, spiral may be described most easily using polar coordinates, where the radius is a monotonic continuous function of angle :
The circle would be regarded as a degenerate case (the function not being strictly monotonic, but rather constant).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Life is non-linear. This course introduces dynamical systems as a technique for modelling simple biological processes. The emphasis is on the qualitative and numerical analysis of non-linear dynamical
The aim of this course is to acquire the basic knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star
clusters, galaxies, and galaxy clusters.
A Fermat's spiral or parabolic spiral is a plane curve with the property that the area between any two consecutive full turns around the spiral is invariant. As a result, the distance between turns grows in inverse proportion to their distance from the spiral center, contrasting with the Archimedean spiral (for which this distance is invariant) and the logarithmic spiral (for which the distance between turns is proportional to the distance from the center). Fermat spirals are named after Pierre de Fermat.
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie"). More than a century later, the curve was discussed by Descartes (1638), and later extensively investigated by Jacob Bernoulli, who called it Spira mirabilis, "the marvelous spiral".
In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes. There are several comparable spirals that approximate, but do not exactly equal, a golden spiral. For example, a golden spiral can be approximated by first starting with a rectangle for which the ratio between its length and width is the golden ratio.
The cold neutral medium (CNM) is an important part of the galactic gas cycle and a precondition for the formation of molecular and star-forming gas, yet its distribution is still not fully understood. In this work, we present extremely high resolution simu ...
Shell galaxies make a class of tidally distorted galaxies, characterized by wide concentric arc(s), extending out to large galactocentric distances with sharp outer edges. Recent observations of young massive star clusters in the prominent outer shell of N ...
The non-dimensional energy of starting vortex rings typically converges to values around 0.33 when they are created by a piston-cylinder or a bluff body translating at a constant speed. To explore the limits of the universality of this value and to analyse ...