In probability theory, a Cox process, also known as a doubly stochastic Poisson process is a point process which is a generalization of a Poisson process where the intensity that varies across the underlying mathematical space (often space or time) is itself a stochastic process. The process is named after the statistician David Cox, who first published the model in 1955.
Cox processes are used to generate simulations of spike trains (the sequence of action potentials generated by a neuron), and also in financial mathematics where they produce a "useful framework for modeling prices of financial instruments in which credit risk is a significant factor."
Let be a random measure.
A random measure is called a Cox process directed by , if is a Poisson process with intensity measure .
Here, is the conditional distribution of , given .
If is a Cox process directed by , then has the Laplace transform
for any positive, measurable function .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
In statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on a mathematical space such as the real line or Euclidean space. Point processes can be used for spatial data analysis, which is of interest in such diverse disciplines as forestry, plant ecology, epidemiology, geography, seismology, materials science, astronomy, telecommunications, computational neuroscience, economics and others.
This course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. We study fundamental notions and techniques necessary for applications in finance such
Explores the Poisson process approach in extreme value analysis, emphasizing component-wise transformations and likelihood functions for extreme events.
Secondary electron emission is an important process that plays a significant role in several plasma-related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliabl ...
Electrofacies using well logs play a vital role in reservoir characterization. Often, they are sorted into clusters according to the self-similarity of input logs and do not capture the known underlying physical process. In this paper, we propose an unsupe ...
SOC PETROPHYSICISTS & WELL LOG ANALYSTS-SPWLA2023
This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from th ...