Un processus de Cox (nommé d'après le statisticien britannique David Cox), connu aussi sous le nom de double processus stochastique de Poisson, est un processus stochastique généralisant le processus de Poisson dans lequel la moyenne n'est pas constante mais varie dans l'espace ou le temps. Dans le cadre du processus de Cox, l'intensité dépendant du temps est un processus stochastique séparé du processus de Poisson. Un exemple serait un potentiel d'action (appelé aussi influx nerveux) d'un neurone sensoriel avec une stimulation externe. Si la stimulation est un processus stochastique et s'il module le taux d'excitation (fonction d'intensité) du neurone, alors le potentiel d'action peut être vu comme la réalisation d'un processus de Cox.
On peut trouver un autre exemple de l'utilisation du processus de Cox dans le domaine des mathématiques financières et plus particulièrement dans la modélisation des risques de crédit.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. We study fundamental notions and techniques necessary for applications in finance such
vignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
En probabilité et statistique, un processus ponctuel est un type particulier de processus stochastique pour lequel une réalisation est un ensemble de points isolés du temps et/ou de l'espace. Par exemple, la position des arbres dans une forêt peut être modélisée comme la réalisation d'un processus ponctuel. Les processus ponctuels sont des objets très étudiés en probabilité et en statistique pour représenter et analyser des données spatialisées qui interviennent dans une multitude de domaines telle que l'écologie, l'astronomie, l'épidémiologie, la géographie, la sismologie, les télécommunications, la science des matériaux et beaucoup d'autres.
Explore l'approche du processus de Poisson dans l'analyse des valeurs extrêmes, en mettant l'accent sur les transformations par composante et les fonctions de probabilité pour les événements extrêmes.
,
Electrofacies using well logs play a vital role in reservoir characterization. Often, they are sorted into clusters according to the self-similarity of input logs and do not capture the known underlying physical process. In this paper, we propose an unsupe ...
SOC PETROPHYSICISTS & WELL LOG ANALYSTS-SPWLA2023
Secondary electron emission is an important process that plays a significant role in several plasma-related applications. As measuring the secondary electron yield experimentally is very challenging, quantitative modelling of this process to obtain reliabl ...
This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from th ...