The floating-gate MOSFET (FGMOS), also known as a floating-gate MOS transistor or floating-gate transistor, is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) where the gate is electrically isolated, creating a floating node in direct current, and a number of secondary gates or inputs are deposited above the floating gate (FG) and are electrically isolated from it. These inputs are only capacitively connected to the FG. Since the FG is surrounded by highly resistive material, the charge contained in it remains unchanged for long periods of time, nowadays typically longer than 10 years. Usually Fowler-Nordheim tunneling and hot-carrier injection mechanisms are used to modify the amount of charge stored in the FG.
The FGMOS is commonly used as a floating-gate memory cell, the digital storage element in EPROM, EEPROM and flash memory technologies. Other uses of the FGMOS include a neuronal computational element in neural networks, analog storage element, digital potentiometers and single-transistor DACs.
The first MOSFET was invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959, and presented in 1960. The first report of a FGMOS was later made by Dawon Kahng and Simon Min Sze at Bell Labs, and dates from 1967. The earliest practical application of FGMOS was floating-gate memory cells, which Kahng and Sze proposed could be used to produce reprogrammable ROM (read-only memory). Initial applications of FGMOS was digital semiconductor memory, to store nonvolatile data in EPROM, EEPROM and flash memory.
In 1989, Intel employed the FGMOS as an analog nonvolatile memory element in its electrically trainable artificial neural network (ETANN) chip, demonstrating the potential of using FGMOS devices for applications other than digital memory.
Three research accomplishments laid the groundwork for much of the current FGMOS circuit development:
Thomsen and Brooke's demonstration and use of electron tunneling in a standard CMOS double-poly process allowed many researchers to investigate FGMOS circuits concepts without requiring access to specialized fabrication processes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it. Over the history of computing, different memory cell architectures have been used, including core memory and bubble memory.
Read-only memory (ROM) is a type of non-volatile memory used in computers and other electronic devices. Data stored in ROM cannot be electronically modified after the manufacture of the memory device. Read-only memory is useful for storing software that is rarely changed during the life of the system, also known as firmware. Software applications (like video games) for programmable devices can be distributed as plug-in cartridges containing ROM.
A solid-state drive (SSD) is a solid-state storage device that uses integrated circuit assemblies to store data persistently, typically using flash memory, and functioning as secondary storage in the hierarchy of computer storage. It is also sometimes called a semiconductor storage device, a solid-state device or a solid-state disk, even though SSDs lack the physical spinning disks and movable read–write heads used in hard disk drives (HDDs) and floppy disks. SSD also has rich internal parallelism for data processing.
Ce cours est une introduction aux principes physiques des composants à semiconducteurs (transistors bipolaires, MOSFET et autres) et à leur modèlisation. Les performances électriques (digitales et ana
The basic function of an IoT node is to collect data and send it through a wireless channel to the cloud. Since the power consumption of an IoT node is largely dominated by the wireless communication,
Explores exciton manipulation in devices and their potential applications for low-power computing and optoelectronic components.
Owing to the advancements in the area of power electronics, efficient and flexible ac to dc conversion is made possible, bringing back into focus the idea of the dc power transmission at various voltage levels. Several technical and economical factors advo ...
Machine learning and data processing algorithms have been thriving in finding ways of processing and classifying information by exploiting the hidden trends of large datasets. Although these emerging computational methods have become successful in today's ...
Magnetic bit writing by short-wave magnons without conversion to the electrical domain is expected to be a game-changer for in-memory computing architectures. Recently, the reversal of nanomagnets by propagating magnons was demonstrated. However, experimen ...