An annotation is extra information associated with a particular point in a document or other piece of information. It can be a note that includes a comment or explanation. Annotations are sometimes presented in the margin of book pages. For annotations of different digital media, see web annotation and text annotation.
Annotation Practices are highlighting a phrase or sentence and including a comment, circling a word that needs defining, posing a question when something is not fully understood and writing a short summary of a key section. It also invites students to "(re)construct a history through material engagement and exciting DIY (Do-It-Yourself) annotation practices." Annotation practices that are available today offer a remarkable set of tools for students to begin to work, and in a more collaborative, connected way than has been previously possible.
Text and Film Annotation is a technique that involves using comments, text within a film. Analyzing videos is an undertaking that is never entirely free of preconceived notions, and the first step for researchers is to find their bearings within the field of possible research approaches and thus reflect on their own basic assumptions. Annotations can take part within the video, and can be used when the data video is recorded. It is being used as a tool in text and film to write one's thoughts and emotion into the markings. In any number of steps of analysis, it can also be supplemented with more annotations. Anthropologists Clifford Geertz calls it a "thick description." This can give a sense of how useful annotation is, especially by adding a description of how it can be implemented in film.
Marginalia refers to writing or decoration in the margins of a manuscript. Medieval marginalia is so well-known that amusing or disconcerting instances of it are fodder for viral aggregators such as Buzzfeed and Brainpickings, and the fascination with other readers’ reading is manifest in sites such as Melville’s Marginalia Online or Harvard’s online exhibit of marginalia from six personal libraries.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
This course provides students with a working knowledge of macroeconomic models that explicitly incorporate financial markets. The goal is to develop a broad and analytical framework for analyzing the
Named-entity recognition (NER) (also known as (named) entity identification, entity chunking, and entity extraction) is a subtask of information extraction that seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc. Most research on NER/NEE systems has been structured as taking an unannotated block of text, such as this one: Jim bought 300 shares of Acme Corp.
Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." Written resources may include websites, books, emails, reviews, and articles. High-quality information is typically obtained by devising patterns and trends by means such as statistical pattern learning. According to Hotho et al.
In information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject. Every academic discipline or field creates ontologies to limit complexity and organize data into information and knowledge.
This research, within the framework of computational archives, inspects a novel approach to representing intangible knowledge in traditional martial arts. The methodology presents a unity of ontological modeling, semantic annotation, and feature-based mach ...
Zentrum für Informationsmodellierung - Austrian Centre for Digital Humanities, University of Graz2023
This paper explores a novel application of textual semantic similarity to user-preference representation for rating prediction. The approach represents a user's preferences as a graph of textual snippets from review text, where the edges are defined by sem ...
HIPE-2022 datasets used for the HIPE 2022 shared task on named entity recognition and classification (NERC) and entity linking (EL) in multilingual historical documents. HIPE-2022 datasets are based on six primary datasets assembled and prepared for the sh ...