Summary
Named-entity recognition (NER) (also known as (named) entity identification, entity chunking, and entity extraction) is a subtask of information extraction that seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc. Most research on NER/NEE systems has been structured as taking an unannotated block of text, such as this one: Jim bought 300 shares of Acme Corp. in 2006. And producing an annotated block of text that highlights the names of entities: [Jim]Person bought 300 shares of [Acme Corp.]Organization in [2006]Time. In this example, a person name consisting of one token, a two-token company name and a temporal expression have been detected and classified. State-of-the-art NER systems for English produce near-human performance. For example, the best system entering MUC-7 scored 93.39% of F-measure while human annotators scored 97.60% and 96.95%. Notable NER platforms include: GATE supports NER across many languages and domains out of the box, usable via a graphical interface and a Java API. OpenNLP includes rule-based and statistical named-entity recognition. SpaCy features fast statistical NER as well as an open-source named-entity visualizer. Transformers features token classification using deep learning models. In the expression named entity, the word named restricts the task to those entities for which one or many strings, such as words or phrases, stands (fairly) consistently for some referent. This is closely related to rigid designators, as defined by Kripke, although in practice NER deals with many names and referents that are not philosophically "rigid". For instance, the automotive company created by Henry Ford in 1903 can be referred to as Ford or Ford Motor Company, although "Ford" can refer to many other entities as well (see Ford).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.