A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously.
\mathit aA{} + \mathit bB \mathit cC{} + \mathit dD
A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics.
Weak acids and bases undergo reversible reactions. For example, carbonic acid:
H2CO3 (l) + H2O(l) ⇌ HCO3−(aq) + H3O+(aq).
The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K. The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction. So, when the free energy change is large (more than about 30 kJ mol−1), the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an irreversible reaction, although small amounts of the reactants are still expected to be present in the reacting system. A truly irreversible chemical reaction is usually achieved when one of the products exits the reacting system, for example, as does carbon dioxide (volatile) in the reaction
CaCO3 + 2HCl → CaCl2 + H2O + CO2↑
The concept of a reversible reaction was introduced by Berthollet in 1803, after he had observed the formation of sodium carbonate crystals at the edge of a salt lake (one of the natron lakes in Egypt, in limestone):
2NaCl + CaCO3 → Na2CO3 + CaCl2
He recognized this as the reverse of the familiar reaction
Na2CO3 + CaCl2→ 2NaCl + CaCO3
Until then, chemical reactions were thought to always proceed in one direction. Berthollet reasoned that the excess of salt in the lake helped push the "reverse" reaction towards the formation of sodium carbonate.
In 1864, Waage and Guldberg formulated their law of mass action which quantified Berthollet's observation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The theoretical background and practical aspects of heterogeneous reactions including the basic knowledge of heterogeneous catalysis are introduced. The fundamentals are given to allow the design of m
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
This course applies concepts from chemical kinetics and mass and energy balances to address chemical reaction engineering problems, with a focus on industrial applications. Students develop the abilit
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture.
In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the concentration of neither changes. It is a particular example of a system in a steady state. In physics, concerning thermodynamics, a closed system is in thermodynamic equilibrium when reactions occur at such rates that the composition of the mixture does not change with time.
Products are the species formed from chemical reactions. During a chemical reaction, reactants are transformed into products after passing through a high energy transition state. This process results in the consumption of the reactants. It can be a spontaneous reaction or mediated by catalysts which lower the energy of the transition state, and by solvents which provide the chemical environment necessary for the reaction to take place. When represented in chemical equations, products are by convention drawn on the right-hand side, even in the case of reversible reactions.
Deracemization of racemic chiral compounds is an attractive approach in asymmetric synthesis, but its development has been hindered by energetic and kinetic challenges. Here we describe a catalytic deracemization method for secondary benzylic alcohols whic ...
The Spindle Assembly Abnormal Protein 6 (SAS-6) forms dimers, which then self-assemble into rings that are critical for the nine-fold symmetry of the centriole organelle. It has recently been shown experimentally that the self-assembly of SAS-6 rings is st ...
AIP Publishing2023
, , , ,
Achieving fundamental understanding of enantioselective heterogeneous synthesis is marred by the permanent presence of multitudinous arrangements of catalytically active sites in real catalysts. In this study, we address this issue by using structurally co ...