GyrobifastigiumIn geometry, the gyrobifastigium is the 26th Johnson solid (J_26). It can be constructed by joining two face-regular triangular prisms along corresponding square faces, giving a quarter-turn to one prism. It is the only Johnson solid that can tile three-dimensional space. It is also the vertex figure of the nonuniform p-q duoantiprism (if p and q are greater than 2). Despite the fact that p, q = 3 would yield a geometrically identical equivalent to the Johnson solid, it lacks a circumscribed sphere that touches all vertices, except for the case p = 5, q = 5/3, which represents a uniform great duoantiprism.
Triangular orthobicupolaIn geometry, the triangular orthobicupola is one of the Johnson solids (J_27). As the name suggests, it can be constructed by attaching two triangular cupolas (J_3) along their bases. It has an equal number of squares and triangles at each vertex; however, it is not vertex-transitive. It is also called an anticuboctahedron, twisted cuboctahedron or disheptahedron. It is also a canonical polyhedron. The triangular orthobicupola is the first in an infinite set of orthobicupolae.
Bicupola (geometry)In geometry, a bicupola is a solid formed by connecting two cupolae on their bases. There are two classes of bicupola because each cupola (bicupola half) is bordered by alternating triangles and squares. If similar faces are attached together the result is an orthobicupola; if squares are attached to triangles it is a gyrobicupola. Cupolae and bicupolae categorically exist as infinite sets of polyhedra, just like the pyramids, bipyramids, prisms, and trapezohedra.
Rectified 24-cellIn geometry, the rectified 24-cell or rectified icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 cuboctahedra. It can be obtained by rectification of the 24-cell, reducing its octahedral cells to cubes and cuboctahedra. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC24. It can also be considered a cantellated 16-cell with the lower symmetries B4 = [3,3,4]. B4 would lead to a bicoloring of the cuboctahedral cells into 8 and 16 each.
TensegrityTensegrity, tensional integrity or floating compression is a structural principle based on a system of isolated components under compression inside a network of continuous tension, and arranged in such a way that the compressed members (usually bars or struts) do not touch each other while the prestressed tensioned members (usually cables or tendons) delineate the system spatially. The term was coined by Buckminster Fuller in the 1960s as a portmanteau of "tensional integrity".
Tesseractic honeycombIn four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets. Its vertex figure is a 16-cell. Two tesseracts meet at each cubic cell, four meet at each square face, eight meet on each edge, and sixteen meet at each vertex. It is an analog of the square tiling, {4,4}, of the plane and the cubic honeycomb, {4,3,4}, of 3-space.
Chiral polytopeIn mathematics, there are two competing definitions for a chiral polytope. One is that it is a polytope that is chiral (or "enantiomorphic"), meaning that it does not have mirror symmetry. By this definition, a polytope that lacks any symmetry at all would be an example of a chiral polytope. The other, competing definition of a chiral polytope is that it is a polytope that is as symmetric as possible without being mirror-symmetric, formalized in terms of the action of the symmetry group of the polytope on its flags.
CubohemioctahedronIn geometry, the cubohemioctahedron is a nonconvex uniform polyhedron, indexed as U15. It has 10 faces (6 squares and 4 regular hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral. It is given Wythoff symbol 4 | 3, although that is a double-covering of this figure. A nonconvex polyhedron has intersecting faces which do not represent new edges or faces. In the picture vertices are marked by golden spheres, and edges by silver cylinders. It is a hemipolyhedron with 4 hexagonal faces passing through the model center.
OctahemioctahedronIn geometry, the octahemioctahedron or allelotetratetrahedron is a nonconvex uniform polyhedron, indexed as U_3. It has 12 faces (8 triangles and 4 hexagons), 24 edges and 12 vertices. Its vertex figure is a crossed quadrilateral. It is one of nine hemipolyhedra, with 4 hexagonal faces passing through the model center. It is the only hemipolyhedron that is orientable, and the only uniform polyhedron with an Euler characteristic of zero (a topological torus).
24-cell honeycombIn four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation (or honeycomb) of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol {3,4,3,3}. The dual tessellation by regular 16-cell honeycomb has Schläfli symbol {3,3,4,3}. Together with the tesseractic honeycomb (or 4-cubic honeycomb) these are the only regular tessellations of Euclidean 4-space. The 24-cell honeycomb can be constructed as the Voronoi tessellation of the D4 or F4 root lattice.