Summary
Tensegrity, tensional integrity or floating compression is a structural principle based on a system of isolated components under compression inside a network of continuous tension, and arranged in such a way that the compressed members (usually bars or struts) do not touch each other while the prestressed tensioned members (usually cables or tendons) delineate the system spatially. The term was coined by Buckminster Fuller in the 1960s as a portmanteau of "tensional integrity". The other denomination of tensegrity, floating compression, was used mainly by the constructivist artist Kenneth Snelson. Tensegrity structures are based on the combination of a few simple design patterns: members loaded in either pure compression or pure tension, which means that the structure will only fail if the cables yield or the rods buckle. This enables the material properties and cross-sectional geometry of each member to be optimized to the particular load it carries. preload or tensional prestress allows cables to always be in tension, to maintain structural integrity. mechanical stability, which allows the members to remain in tension/compression as stress on the structure increases. The structure also becomes stiffer as cable tension increases. Because of these patterns, no structural member experiences a bending moment and there are no shear stresses within the system. This can produce exceptionally strong and rigid structures for their mass and for the cross section of the components. The loading of at least some tensegrity structures causes an auxetic response and negative Poisson ratio, e.g. the T3-prism and 6-strut tensegrity icosahedron. A conceptual building block of tensegrity is seen in the 1951 Skylon. Six cables, three at each end, hold the tower in position. The three cables connected to the bottom "define" its location. The other three cables are simply keeping it vertical. A three-rod tensegrity structure (shown above in a spinning drawing of a T3-Prism) builds on this simpler structure: the ends of each green rod look like the top and bottom of the Skylon.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.