In mathematical logic and descriptive set theory, the analytical hierarchy is an extension of the arithmetical hierarchy. The analytical hierarchy of formulas includes formulas in the language of second-order arithmetic, which can have quantifiers over both the set of natural numbers, , and over functions from to . The analytical hierarchy of sets classifies sets by the formulas that can be used to define them; it is the lightface version of the projective hierarchy.
The notation
indicates the class of formulas in the language of second-order arithmetic with number quantifiers but no set quantifiers. This language does not contain set parameters. The Greek letters here are lightface symbols, which indicate this choice of language. Each corresponding boldface symbol denotes the corresponding class of formulas in the extended language with a parameter for each real; see projective hierarchy for details.
A formula in the language of second-order arithmetic is defined to be if it is logically equivalent to a formula of the form where is . A formula is defined to be if it is logically equivalent to a formula of the form where is . This inductive definition defines the classes and for every natural number .
Kuratowski and Tarski showed in 1931 that every formula in the language of second-order arithmetic has a prenex normal form, and therefore or for some . Because meaningless quantifiers can be added to any formula, once a formula is given the classification or for some it will be given the classifications and for all greater than .
A set of natural numbers is assigned the classification if it is definable by a formula. The set is assigned the classification if it is definable by a formula. If the set is both and then it is given the additional classification .
The sets are called hyperarithmetical. An alternate classification of these sets by way of iterated computable functionals is provided by the hyperarithmetical theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precursor to second-order arithmetic that involves third-order parameters was introduced by David Hilbert and Paul Bernays in their book Grundlagen der Mathematik. The standard axiomatization of second-order arithmetic is denoted by Z2.
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Descriptive set theory begins with the study of Polish spaces and their Borel sets.
In recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory. The central focus of hyperarithmetic theory is the sets of natural numbers known as hyperarithmetic sets. There are three equivalent ways of defining this class of sets; the study of the relationships between these different definitions is one motivation for the study of hyperarithmetical theory.
Route guidance refers to information provided to travelers in an attempt to facilitate their decisions relative to departure time, travel mode and route. We are specifically interested in consistent anticipatory route guidance, in which real-time traffic m ...
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...