In computing, POSIX Threads, commonly known as pthreads, is an execution model that exists independently from a programming language, as well as a parallel execution model. It allows a program to control multiple different flows of work that overlap in time. Each flow of work is referred to as a thread, and creation and control over these flows is achieved by making calls to the POSIX Threads API. POSIX Threads is an API defined by the Institute of Electrical and Electronics Engineers (IEEE) standard POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995).
Implementations of the API are available on many Unix-like POSIX-conformant operating systems such as FreeBSD, NetBSD, OpenBSD, Linux, macOS, Android, Solaris, Redox, and AUTOSAR Adaptive, typically bundled as a library libpthread. DR-DOS and Microsoft Windows implementations also exist: within the SFU/SUA subsystem which provides a native implementation of a number of POSIX APIs, and also within third-party packages such as pthreads-w32, which implements pthreads on top of existing Windows API.
pthreads defines a set of C programming language types, functions and constants. It is implemented with a pthread.h header and a thread library.
There are around 100 threads procedures, all prefixed pthread_ and they can be categorized into four groups:
Thread management - creating, joining threads etc.
Mutexes
Condition variables
Synchronization between threads using read write locks and barriers
Spinlocks
The POSIX semaphore API works with POSIX threads but is not part of threads standard, having been defined in the POSIX.1b, Real-time extensions (IEEE Std 1003.1b-1993) standard. Consequently, the semaphore procedures are prefixed by sem_ instead of pthread_.
An example illustrating the use of pthreads in C:
#include
#include
#include
#include
#include
#define NUM_THREADS 5
void *perform_work(void *arguments){
int index = *((int *)arguments);
int sleep_time = 1 + rand() % NUM_THREADS;
printf("THREAD %d: Started.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Hardware compilation is the process of transforming specialized hardware description languages into circuit descriptions, which are iteratively refined, detailed and optimized. The course presents a
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
Multiprocessors are now the defacto building blocks for all computer systems. This course will build upon the basic concepts offered in Computer Architecture I to cover the architecture and organizati
In computer programming, a runtime system or runtime environment is a sub-system that exists both in the computer where a program is created, as well as in the computers where the program is intended to be run. The name comes from the compile time and runtime division from compiled languages, which similarly distinguishes the computer processes involved in the creation of a program (compilation) and its execution in the target machine (the run time). Most programming languages have some form of runtime system that provides an environment in which programs run.
NetBSD is a free and open-source Unix operating system based on the Berkeley Software Distribution (BSD). It was the first open-source BSD descendant officially released after 386BSD was forked. It continues to be actively developed and is available for many platforms, including servers, desktops, handheld devices, and embedded systems. The NetBSD project focuses on code clarity, careful design, and portability across many computer architectures. Its source code is publicly available and permissively licensed.
Bionic is an implementation of the standard C library, developed by Google for its Android operating system. It differs from the GNU C Library (glibc) in being designed for devices with less memory and processor power than a typical Linux system. It is a combination of new code and code from FreeBSD, NetBSD, and OpenBSD released under a BSD license, rather than glibc, which uses the GNU Lesser General Public License.
Covers the basics of parallel programming, including concurrency, forms of parallelism, synchronization, and programming models like PThreads and OpenMP.
Writing a correct operating system kernel is notoriously hard. Kernel code requires manual memory management and type-unsafe code and must efficiently handle complex, asynchronous events. In addition, increasing CPU core counts further complicate kernel de ...
This paper describes a deterministic and parallel implementation of the VPR routability-driven router for FPGAs. We considered two parallefization strategies: (1) routing multiple nets in parallel; and (2) routing one net at a time, while parallelizing the ...
Context. A novel high-performance exact pair-counting toolkit called fast correlation function calculator (FCFC) is presented.Aims. With the rapid growth of modern cosmological datasets, the evaluation of correlation functions with observational and simula ...